Optimization of steel production scheduling with complex time-sensitive electricity cost

•Scheduling models can be extended with minimum-cost network flow for energy-cost optimization.•A large monolithic formulation can be avoided with the bi-level heuristic algorithm.•Bi-level heuristic can solve industrial size problems. Energy-intensive industries can take advantage of process flexib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 2015-05, Vol.76, p.117-136
Hauptverfasser: Hadera, Hubert, Harjunkoski, Iiro, Sand, Guido, Grossmann, Ignacio E., Engell, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue
container_start_page 117
container_title Computers & chemical engineering
container_volume 76
creator Hadera, Hubert
Harjunkoski, Iiro
Sand, Guido
Grossmann, Ignacio E.
Engell, Sebastian
description •Scheduling models can be extended with minimum-cost network flow for energy-cost optimization.•A large monolithic formulation can be avoided with the bi-level heuristic algorithm.•Bi-level heuristic can solve industrial size problems. Energy-intensive industries can take advantage of process flexibility to reduce operating costs by optimal scheduling of production tasks. In this study, we develop an MILP formulation to extend a continuous-time model with energy-awareness to optimize the daily production schedules and the electricity purchase including the load commitment problem. The sources of electricity that are considered are purchase on volatile markets, time-of-use and base load contracts, as well as onsite generation. The possibility to sell electricity back to the grid is also included. The model is applied to the melt shop section of a stainless steel plant. Due to the large-scale nature of the combinatorial problem, we propose a bi-level heuristic algorithm to tackle instances of industrial size. Case studies show that the potential impact of high prices in the day-ahead markets of electricity can be mitigated by jointly optimizing the production schedule and the associated net electricity consumption cost.
doi_str_mv 10.1016/j.compchemeng.2015.02.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770308804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135415000472</els_id><sourcerecordid>1770308804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-d4e56dba55e9e969cf3d5b8959aa08cf21ed6ecec8b0b447943d4ffc0d0aa25f3</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEqXwH8KNS8I6sRP7iCpeUqVeQOJmOfamdZUXsVMev5605cCR00qr-WZ3hpBrCgkFmt9uE9M1vdlgg-06SYHyBNIEgJ2QGRVFFrOs4KdkBiBFTDPOzsmF91sASJkQM_K26oNr3LcOrmujrop8QKyjfujsaA47P5nbsXbtOvpwYRPt79X4GU0Yxh5b74LbYYQ1mjA448LXJPHhkpxVuvZ49Tvn5PXh_mXxFC9Xj8-Lu2VsGEtDbBny3Jaac5Qoc2mqzPJSSC61BmGqlKLN0aARJZSMFZJlllWVAQtap7zK5uTm6Du9_D6iD6px3mBd6xa70StaFJCBEMAmqTxKzdB5P2Cl-sE1evhSFNS-TbVVf9pU-zYVpAoO7OLI4pRl53BQ3jhsDVo3TMGV7dw_XH4AwY2Heg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770308804</pqid></control><display><type>article</type><title>Optimization of steel production scheduling with complex time-sensitive electricity cost</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hadera, Hubert ; Harjunkoski, Iiro ; Sand, Guido ; Grossmann, Ignacio E. ; Engell, Sebastian</creator><creatorcontrib>Hadera, Hubert ; Harjunkoski, Iiro ; Sand, Guido ; Grossmann, Ignacio E. ; Engell, Sebastian</creatorcontrib><description>•Scheduling models can be extended with minimum-cost network flow for energy-cost optimization.•A large monolithic formulation can be avoided with the bi-level heuristic algorithm.•Bi-level heuristic can solve industrial size problems. Energy-intensive industries can take advantage of process flexibility to reduce operating costs by optimal scheduling of production tasks. In this study, we develop an MILP formulation to extend a continuous-time model with energy-awareness to optimize the daily production schedules and the electricity purchase including the load commitment problem. The sources of electricity that are considered are purchase on volatile markets, time-of-use and base load contracts, as well as onsite generation. The possibility to sell electricity back to the grid is also included. The model is applied to the melt shop section of a stainless steel plant. Due to the large-scale nature of the combinatorial problem, we propose a bi-level heuristic algorithm to tackle instances of industrial size. Case studies show that the potential impact of high prices in the day-ahead markets of electricity can be mitigated by jointly optimizing the production schedule and the associated net electricity consumption cost.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2015.02.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; Continuous-time models ; Demand-side management ; Electric potential ; Electricity ; Energy optimization ; Marketing ; Markets ; Mathematical models ; Optimization ; Schedules ; Scheduling ; Steel plant</subject><ispartof>Computers &amp; chemical engineering, 2015-05, Vol.76, p.117-136</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-d4e56dba55e9e969cf3d5b8959aa08cf21ed6ecec8b0b447943d4ffc0d0aa25f3</citedby><cites>FETCH-LOGICAL-c442t-d4e56dba55e9e969cf3d5b8959aa08cf21ed6ecec8b0b447943d4ffc0d0aa25f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compchemeng.2015.02.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hadera, Hubert</creatorcontrib><creatorcontrib>Harjunkoski, Iiro</creatorcontrib><creatorcontrib>Sand, Guido</creatorcontrib><creatorcontrib>Grossmann, Ignacio E.</creatorcontrib><creatorcontrib>Engell, Sebastian</creatorcontrib><title>Optimization of steel production scheduling with complex time-sensitive electricity cost</title><title>Computers &amp; chemical engineering</title><description>•Scheduling models can be extended with minimum-cost network flow for energy-cost optimization.•A large monolithic formulation can be avoided with the bi-level heuristic algorithm.•Bi-level heuristic can solve industrial size problems. Energy-intensive industries can take advantage of process flexibility to reduce operating costs by optimal scheduling of production tasks. In this study, we develop an MILP formulation to extend a continuous-time model with energy-awareness to optimize the daily production schedules and the electricity purchase including the load commitment problem. The sources of electricity that are considered are purchase on volatile markets, time-of-use and base load contracts, as well as onsite generation. The possibility to sell electricity back to the grid is also included. The model is applied to the melt shop section of a stainless steel plant. Due to the large-scale nature of the combinatorial problem, we propose a bi-level heuristic algorithm to tackle instances of industrial size. Case studies show that the potential impact of high prices in the day-ahead markets of electricity can be mitigated by jointly optimizing the production schedule and the associated net electricity consumption cost.</description><subject>Computer simulation</subject><subject>Continuous-time models</subject><subject>Demand-side management</subject><subject>Electric potential</subject><subject>Electricity</subject><subject>Energy optimization</subject><subject>Marketing</subject><subject>Markets</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Steel plant</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEqXwH8KNS8I6sRP7iCpeUqVeQOJmOfamdZUXsVMev5605cCR00qr-WZ3hpBrCgkFmt9uE9M1vdlgg-06SYHyBNIEgJ2QGRVFFrOs4KdkBiBFTDPOzsmF91sASJkQM_K26oNr3LcOrmujrop8QKyjfujsaA47P5nbsXbtOvpwYRPt79X4GU0Yxh5b74LbYYQ1mjA448LXJPHhkpxVuvZ49Tvn5PXh_mXxFC9Xj8-Lu2VsGEtDbBny3Jaac5Qoc2mqzPJSSC61BmGqlKLN0aARJZSMFZJlllWVAQtap7zK5uTm6Du9_D6iD6px3mBd6xa70StaFJCBEMAmqTxKzdB5P2Cl-sE1evhSFNS-TbVVf9pU-zYVpAoO7OLI4pRl53BQ3jhsDVo3TMGV7dw_XH4AwY2Heg</recordid><startdate>20150508</startdate><enddate>20150508</enddate><creator>Hadera, Hubert</creator><creator>Harjunkoski, Iiro</creator><creator>Sand, Guido</creator><creator>Grossmann, Ignacio E.</creator><creator>Engell, Sebastian</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150508</creationdate><title>Optimization of steel production scheduling with complex time-sensitive electricity cost</title><author>Hadera, Hubert ; Harjunkoski, Iiro ; Sand, Guido ; Grossmann, Ignacio E. ; Engell, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-d4e56dba55e9e969cf3d5b8959aa08cf21ed6ecec8b0b447943d4ffc0d0aa25f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer simulation</topic><topic>Continuous-time models</topic><topic>Demand-side management</topic><topic>Electric potential</topic><topic>Electricity</topic><topic>Energy optimization</topic><topic>Marketing</topic><topic>Markets</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Steel plant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadera, Hubert</creatorcontrib><creatorcontrib>Harjunkoski, Iiro</creatorcontrib><creatorcontrib>Sand, Guido</creatorcontrib><creatorcontrib>Grossmann, Ignacio E.</creatorcontrib><creatorcontrib>Engell, Sebastian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadera, Hubert</au><au>Harjunkoski, Iiro</au><au>Sand, Guido</au><au>Grossmann, Ignacio E.</au><au>Engell, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of steel production scheduling with complex time-sensitive electricity cost</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>2015-05-08</date><risdate>2015</risdate><volume>76</volume><spage>117</spage><epage>136</epage><pages>117-136</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>•Scheduling models can be extended with minimum-cost network flow for energy-cost optimization.•A large monolithic formulation can be avoided with the bi-level heuristic algorithm.•Bi-level heuristic can solve industrial size problems. Energy-intensive industries can take advantage of process flexibility to reduce operating costs by optimal scheduling of production tasks. In this study, we develop an MILP formulation to extend a continuous-time model with energy-awareness to optimize the daily production schedules and the electricity purchase including the load commitment problem. The sources of electricity that are considered are purchase on volatile markets, time-of-use and base load contracts, as well as onsite generation. The possibility to sell electricity back to the grid is also included. The model is applied to the melt shop section of a stainless steel plant. Due to the large-scale nature of the combinatorial problem, we propose a bi-level heuristic algorithm to tackle instances of industrial size. Case studies show that the potential impact of high prices in the day-ahead markets of electricity can be mitigated by jointly optimizing the production schedule and the associated net electricity consumption cost.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2015.02.004</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 2015-05, Vol.76, p.117-136
issn 0098-1354
1873-4375
language eng
recordid cdi_proquest_miscellaneous_1770308804
source Access via ScienceDirect (Elsevier)
subjects Computer simulation
Continuous-time models
Demand-side management
Electric potential
Electricity
Energy optimization
Marketing
Markets
Mathematical models
Optimization
Schedules
Scheduling
Steel plant
title Optimization of steel production scheduling with complex time-sensitive electricity cost
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20steel%20production%20scheduling%20with%20complex%20time-sensitive%20electricity%20cost&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Hadera,%20Hubert&rft.date=2015-05-08&rft.volume=76&rft.spage=117&rft.epage=136&rft.pages=117-136&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2015.02.004&rft_dat=%3Cproquest_cross%3E1770308804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770308804&rft_id=info:pmid/&rft_els_id=S0098135415000472&rfr_iscdi=true