Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data
•We use Maxent algorithm to hindcast the distributions of two plant species and validate the projections with fossil data.•We study the effects of model complexity on the Maxent's predictive power across time.•Maxent default settings can lead to the generation of overly complex models.•Models o...
Gespeichert in:
Veröffentlicht in: | Ecological modelling 2015-09, Vol.312, p.308-317 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 317 |
---|---|
container_issue | |
container_start_page | 308 |
container_title | Ecological modelling |
container_volume | 312 |
creator | Moreno-Amat, Elena Mateo, Rubén G. Nieto-Lugilde, Diego Morueta-Holme, Naia Svenning, Jens-Christian García-Amorena, Ignacio |
description | •We use Maxent algorithm to hindcast the distributions of two plant species and validate the projections with fossil data.•We study the effects of model complexity on the Maxent's predictive power across time.•Maxent default settings can lead to the generation of overly complex models.•Models of intermediate complexity lead to better predictions of past distributions.•Controlling for complexity leads to improved cross-temporal model transferability.
Maximum entropy modeling (Maxent) is a widely used algorithm for predicting species distributions across space and time. Properly assessing the uncertainty in such predictions is non-trivial and requires validation with independent datasets. Notably, model complexity (number of model parameters) remains a major concern in relation to overfitting and, hence, transferability of Maxent models. An emerging approach is to validate the cross-temporal transferability of model predictions using paleoecological data. In this study, we assess the effect of model complexity on the performance of Maxent projections across time using two European plant species (Alnus glutinosa (L.) Gaertn. and Corylus avellana L.) with an extensive late Quaternary fossil record in Spain as a study case. We fit 110 models with different levels of complexity under present time and tested model performance using AUC (area under the receiver operating characteristic curve) and AICc (corrected Akaike Information Criterion) through the standard procedure of randomly partitioning current occurrence data. We then compared these results to an independent validation by projecting the models to mid-Holocene (6000 years before present) climatic conditions in Spain to assess their ability to predict fossil pollen presence–absence and abundance. We find that calibrating Maxent models with default settings result in the generation of overly complex models. While model performance increased with model complexity when predicting current distributions, it was higher with intermediate complexity when predicting mid-Holocene distributions. Hence, models of intermediate complexity resulted in the best trade-off to predict species distributions across time. Reliable temporal model transferability is especially relevant for forecasting species distributions under future climate change. Consequently, species-specific model tuning should be used to find the best modeling settings to control for complexity, notably with paleoecological data to independently validate |
doi_str_mv | 10.1016/j.ecolmodel.2015.05.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770307025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304380015002483</els_id><sourcerecordid>1770307025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-b6798b00fe9904494d3ace029e8fb5885cabebb846712eb3a67565d2db95e5693</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS1EJYa2z4CXbDJcx_lx2I0qfioVsYG1ZTs3yCPHDr4e1D4DL91kBrEF6Up3852z-A5jbwTsBYju3XGPLoU5jRj2NYh2D-vJ9gXbCdXXVQ9195LtQEJTSQXwir0mOgKAqFW9Y7_v58W4wtPEzxXcpXkJ-OjLE0-Ru5yIqoLzkrIJvGQTacJsrA8b4SP_Yh4xFk4LOo_ER08le3sqfk2fG-k9P0RuiJBo3tAT-fiDLyZgsqmY6N3aPJpibtjVZALh7Z9_zb5__PDt7nP18PXT_d3hoXKNhFLZrh-UBZhwGKBphmaUxiHUA6rJtkq1zli0VjVdL2q00nR927VjPdqhxbYb5DV7e-ldcvp5Qip69uQwBBMxnUiLvl91reLa_0CbTimpxIb2F_TsLOOkl-xnk5-0AL0tpY_671J6W0rDenJLHi7JVRb-8pg1rS6jw9FndEWPyf-z4xk916Rc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1746883815</pqid></control><display><type>article</type><title>Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data</title><source>Access via ScienceDirect (Elsevier)</source><creator>Moreno-Amat, Elena ; Mateo, Rubén G. ; Nieto-Lugilde, Diego ; Morueta-Holme, Naia ; Svenning, Jens-Christian ; García-Amorena, Ignacio</creator><creatorcontrib>Moreno-Amat, Elena ; Mateo, Rubén G. ; Nieto-Lugilde, Diego ; Morueta-Holme, Naia ; Svenning, Jens-Christian ; García-Amorena, Ignacio</creatorcontrib><description>•We use Maxent algorithm to hindcast the distributions of two plant species and validate the projections with fossil data.•We study the effects of model complexity on the Maxent's predictive power across time.•Maxent default settings can lead to the generation of overly complex models.•Models of intermediate complexity lead to better predictions of past distributions.•Controlling for complexity leads to improved cross-temporal model transferability.
Maximum entropy modeling (Maxent) is a widely used algorithm for predicting species distributions across space and time. Properly assessing the uncertainty in such predictions is non-trivial and requires validation with independent datasets. Notably, model complexity (number of model parameters) remains a major concern in relation to overfitting and, hence, transferability of Maxent models. An emerging approach is to validate the cross-temporal transferability of model predictions using paleoecological data. In this study, we assess the effect of model complexity on the performance of Maxent projections across time using two European plant species (Alnus glutinosa (L.) Gaertn. and Corylus avellana L.) with an extensive late Quaternary fossil record in Spain as a study case. We fit 110 models with different levels of complexity under present time and tested model performance using AUC (area under the receiver operating characteristic curve) and AICc (corrected Akaike Information Criterion) through the standard procedure of randomly partitioning current occurrence data. We then compared these results to an independent validation by projecting the models to mid-Holocene (6000 years before present) climatic conditions in Spain to assess their ability to predict fossil pollen presence–absence and abundance. We find that calibrating Maxent models with default settings result in the generation of overly complex models. While model performance increased with model complexity when predicting current distributions, it was higher with intermediate complexity when predicting mid-Holocene distributions. Hence, models of intermediate complexity resulted in the best trade-off to predict species distributions across time. Reliable temporal model transferability is especially relevant for forecasting species distributions under future climate change. Consequently, species-specific model tuning should be used to find the best modeling settings to control for complexity, notably with paleoecological data to independently validate model projections. For cross-temporal projections of species distributions for which paleoecological data is not available, models of intermediate complexity should be selected.</description><identifier>ISSN: 0304-3800</identifier><identifier>EISSN: 1872-7026</identifier><identifier>DOI: 10.1016/j.ecolmodel.2015.05.035</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Alnus glutinosa ; Complexity ; Corylus avellana ; Current distribution ; Forecasting ; Fossils ; Mathematical models ; Model validation ; Partitioning ; Pollen ; Pollen fossil ; Species distribution model ; β-Multiplier</subject><ispartof>Ecological modelling, 2015-09, Vol.312, p.308-317</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-b6798b00fe9904494d3ace029e8fb5885cabebb846712eb3a67565d2db95e5693</citedby><cites>FETCH-LOGICAL-c430t-b6798b00fe9904494d3ace029e8fb5885cabebb846712eb3a67565d2db95e5693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ecolmodel.2015.05.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Moreno-Amat, Elena</creatorcontrib><creatorcontrib>Mateo, Rubén G.</creatorcontrib><creatorcontrib>Nieto-Lugilde, Diego</creatorcontrib><creatorcontrib>Morueta-Holme, Naia</creatorcontrib><creatorcontrib>Svenning, Jens-Christian</creatorcontrib><creatorcontrib>García-Amorena, Ignacio</creatorcontrib><title>Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data</title><title>Ecological modelling</title><description>•We use Maxent algorithm to hindcast the distributions of two plant species and validate the projections with fossil data.•We study the effects of model complexity on the Maxent's predictive power across time.•Maxent default settings can lead to the generation of overly complex models.•Models of intermediate complexity lead to better predictions of past distributions.•Controlling for complexity leads to improved cross-temporal model transferability.
Maximum entropy modeling (Maxent) is a widely used algorithm for predicting species distributions across space and time. Properly assessing the uncertainty in such predictions is non-trivial and requires validation with independent datasets. Notably, model complexity (number of model parameters) remains a major concern in relation to overfitting and, hence, transferability of Maxent models. An emerging approach is to validate the cross-temporal transferability of model predictions using paleoecological data. In this study, we assess the effect of model complexity on the performance of Maxent projections across time using two European plant species (Alnus glutinosa (L.) Gaertn. and Corylus avellana L.) with an extensive late Quaternary fossil record in Spain as a study case. We fit 110 models with different levels of complexity under present time and tested model performance using AUC (area under the receiver operating characteristic curve) and AICc (corrected Akaike Information Criterion) through the standard procedure of randomly partitioning current occurrence data. We then compared these results to an independent validation by projecting the models to mid-Holocene (6000 years before present) climatic conditions in Spain to assess their ability to predict fossil pollen presence–absence and abundance. We find that calibrating Maxent models with default settings result in the generation of overly complex models. While model performance increased with model complexity when predicting current distributions, it was higher with intermediate complexity when predicting mid-Holocene distributions. Hence, models of intermediate complexity resulted in the best trade-off to predict species distributions across time. Reliable temporal model transferability is especially relevant for forecasting species distributions under future climate change. Consequently, species-specific model tuning should be used to find the best modeling settings to control for complexity, notably with paleoecological data to independently validate model projections. For cross-temporal projections of species distributions for which paleoecological data is not available, models of intermediate complexity should be selected.</description><subject>Algorithms</subject><subject>Alnus glutinosa</subject><subject>Complexity</subject><subject>Corylus avellana</subject><subject>Current distribution</subject><subject>Forecasting</subject><subject>Fossils</subject><subject>Mathematical models</subject><subject>Model validation</subject><subject>Partitioning</subject><subject>Pollen</subject><subject>Pollen fossil</subject><subject>Species distribution model</subject><subject>β-Multiplier</subject><issn>0304-3800</issn><issn>1872-7026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAUhS1EJYa2z4CXbDJcx_lx2I0qfioVsYG1ZTs3yCPHDr4e1D4DL91kBrEF6Up3852z-A5jbwTsBYju3XGPLoU5jRj2NYh2D-vJ9gXbCdXXVQ9195LtQEJTSQXwir0mOgKAqFW9Y7_v58W4wtPEzxXcpXkJ-OjLE0-Ru5yIqoLzkrIJvGQTacJsrA8b4SP_Yh4xFk4LOo_ER08le3sqfk2fG-k9P0RuiJBo3tAT-fiDLyZgsqmY6N3aPJpibtjVZALh7Z9_zb5__PDt7nP18PXT_d3hoXKNhFLZrh-UBZhwGKBphmaUxiHUA6rJtkq1zli0VjVdL2q00nR927VjPdqhxbYb5DV7e-ldcvp5Qip69uQwBBMxnUiLvl91reLa_0CbTimpxIb2F_TsLOOkl-xnk5-0AL0tpY_671J6W0rDenJLHi7JVRb-8pg1rS6jw9FndEWPyf-z4xk916Rc</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Moreno-Amat, Elena</creator><creator>Mateo, Rubén G.</creator><creator>Nieto-Lugilde, Diego</creator><creator>Morueta-Holme, Naia</creator><creator>Svenning, Jens-Christian</creator><creator>García-Amorena, Ignacio</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150901</creationdate><title>Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data</title><author>Moreno-Amat, Elena ; Mateo, Rubén G. ; Nieto-Lugilde, Diego ; Morueta-Holme, Naia ; Svenning, Jens-Christian ; García-Amorena, Ignacio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-b6798b00fe9904494d3ace029e8fb5885cabebb846712eb3a67565d2db95e5693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Alnus glutinosa</topic><topic>Complexity</topic><topic>Corylus avellana</topic><topic>Current distribution</topic><topic>Forecasting</topic><topic>Fossils</topic><topic>Mathematical models</topic><topic>Model validation</topic><topic>Partitioning</topic><topic>Pollen</topic><topic>Pollen fossil</topic><topic>Species distribution model</topic><topic>β-Multiplier</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreno-Amat, Elena</creatorcontrib><creatorcontrib>Mateo, Rubén G.</creatorcontrib><creatorcontrib>Nieto-Lugilde, Diego</creatorcontrib><creatorcontrib>Morueta-Holme, Naia</creatorcontrib><creatorcontrib>Svenning, Jens-Christian</creatorcontrib><creatorcontrib>García-Amorena, Ignacio</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Ecological modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreno-Amat, Elena</au><au>Mateo, Rubén G.</au><au>Nieto-Lugilde, Diego</au><au>Morueta-Holme, Naia</au><au>Svenning, Jens-Christian</au><au>García-Amorena, Ignacio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data</atitle><jtitle>Ecological modelling</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>312</volume><spage>308</spage><epage>317</epage><pages>308-317</pages><issn>0304-3800</issn><eissn>1872-7026</eissn><abstract>•We use Maxent algorithm to hindcast the distributions of two plant species and validate the projections with fossil data.•We study the effects of model complexity on the Maxent's predictive power across time.•Maxent default settings can lead to the generation of overly complex models.•Models of intermediate complexity lead to better predictions of past distributions.•Controlling for complexity leads to improved cross-temporal model transferability.
Maximum entropy modeling (Maxent) is a widely used algorithm for predicting species distributions across space and time. Properly assessing the uncertainty in such predictions is non-trivial and requires validation with independent datasets. Notably, model complexity (number of model parameters) remains a major concern in relation to overfitting and, hence, transferability of Maxent models. An emerging approach is to validate the cross-temporal transferability of model predictions using paleoecological data. In this study, we assess the effect of model complexity on the performance of Maxent projections across time using two European plant species (Alnus glutinosa (L.) Gaertn. and Corylus avellana L.) with an extensive late Quaternary fossil record in Spain as a study case. We fit 110 models with different levels of complexity under present time and tested model performance using AUC (area under the receiver operating characteristic curve) and AICc (corrected Akaike Information Criterion) through the standard procedure of randomly partitioning current occurrence data. We then compared these results to an independent validation by projecting the models to mid-Holocene (6000 years before present) climatic conditions in Spain to assess their ability to predict fossil pollen presence–absence and abundance. We find that calibrating Maxent models with default settings result in the generation of overly complex models. While model performance increased with model complexity when predicting current distributions, it was higher with intermediate complexity when predicting mid-Holocene distributions. Hence, models of intermediate complexity resulted in the best trade-off to predict species distributions across time. Reliable temporal model transferability is especially relevant for forecasting species distributions under future climate change. Consequently, species-specific model tuning should be used to find the best modeling settings to control for complexity, notably with paleoecological data to independently validate model projections. For cross-temporal projections of species distributions for which paleoecological data is not available, models of intermediate complexity should be selected.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ecolmodel.2015.05.035</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3800 |
ispartof | Ecological modelling, 2015-09, Vol.312, p.308-317 |
issn | 0304-3800 1872-7026 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770307025 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Alnus glutinosa Complexity Corylus avellana Current distribution Forecasting Fossils Mathematical models Model validation Partitioning Pollen Pollen fossil Species distribution model β-Multiplier |
title | Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20model%20complexity%20on%20cross-temporal%20transferability%20in%20Maxent%20species%20distribution%20models:%20An%20assessment%20using%20paleobotanical%20data&rft.jtitle=Ecological%20modelling&rft.au=Moreno-Amat,%20Elena&rft.date=2015-09-01&rft.volume=312&rft.spage=308&rft.epage=317&rft.pages=308-317&rft.issn=0304-3800&rft.eissn=1872-7026&rft_id=info:doi/10.1016/j.ecolmodel.2015.05.035&rft_dat=%3Cproquest_cross%3E1770307025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1746883815&rft_id=info:pmid/&rft_els_id=S0304380015002483&rfr_iscdi=true |