Quasi a-ideals in BCI-algebras

Non-classical logic has become a considerable formal tool for computer science on computational intelligence to deal with fuzzy information and uncertain information. BCI-algebras and BCK-algebras are two classes of non-classical logic algebras that are introduced by Iseki in 1966 and they are algeb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical sciences (Karaj, Iran) Iran), 2012-12, Vol.6 (1), p.1-2
1. Verfasser: Gilani, Alireza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2
container_issue 1
container_start_page 1
container_title Mathematical sciences (Karaj, Iran)
container_volume 6
creator Gilani, Alireza
description Non-classical logic has become a considerable formal tool for computer science on computational intelligence to deal with fuzzy information and uncertain information. BCI-algebras and BCK-algebras are two classes of non-classical logic algebras that are introduced by Iseki in 1966 and they are algebraic formulations of BCK and BCI-system in logic algebras. Lele used the notion of fuzzy point to study some properties of BCI-algebras. Jun and Lele used the notion of fuzzy points for establishing quasi q-ideal in the set of all fuzzy points of a fixed BCI-algebras and give some characterizations of these ideals.
doi_str_mv 10.1186/2251-7456-6-67
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770305677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3585423511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-4ec61b94203393bb01686c12ad9db49c05b56f1c72716e8b806b71341d1363b53</originalsourceid><addsrcrecordid>eNptkM1LAzEQxYMoWGqvHmXBi5e0mWTzddRitVAQQc8hyWbLlu1uTboH_3uzVETEeYcZht88hofQNZA5gBILSjlgWXKBs-QZmvwszvNMiMLAuL5Es5R2JJeUmpR8gm5eB5uawuKmCrZNRdMVD8s1tu02uGjTFbqo8zrMvvsUva8e35bPePPytF7eb7Cnmh9xGbwAp0tKGNPMOQJCCQ_UVrpypfaEOy5q8JJKEEE5RYSTwEqogAnmOJuiu5PvIfYfQ0hHs2-SD21ru9APyYCUhBEupMzo7R901w-xy98ZEJwqxpUQmZqfKB_7lGKozSE2exs_DRAzJmbGgMwYkMkabReng5TBbhviL9v_L74AIb1nqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652835866</pqid></control><display><type>article</type><title>Quasi a-ideals in BCI-algebras</title><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gilani, Alireza</creator><creatorcontrib>Gilani, Alireza</creatorcontrib><description>Non-classical logic has become a considerable formal tool for computer science on computational intelligence to deal with fuzzy information and uncertain information. BCI-algebras and BCK-algebras are two classes of non-classical logic algebras that are introduced by Iseki in 1966 and they are algebraic formulations of BCK and BCI-system in logic algebras. Lele used the notion of fuzzy point to study some properties of BCI-algebras. Jun and Lele used the notion of fuzzy points for establishing quasi q-ideal in the set of all fuzzy points of a fixed BCI-algebras and give some characterizations of these ideals.</description><identifier>ISSN: 2008-1359</identifier><identifier>ISSN: 2251-7456</identifier><identifier>EISSN: 2251-7456</identifier><identifier>DOI: 10.1186/2251-7456-6-67</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Applications of Mathematics ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Intelligence ; Logic ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Original Research</subject><ispartof>Mathematical sciences (Karaj, Iran), 2012-12, Vol.6 (1), p.1-2</ispartof><rights>Gilani; licensee Springer. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>The Author(s) 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1186/2251-7456-6-67$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1186/2251-7456-6-67$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Gilani, Alireza</creatorcontrib><title>Quasi a-ideals in BCI-algebras</title><title>Mathematical sciences (Karaj, Iran)</title><addtitle>Math Sci</addtitle><description>Non-classical logic has become a considerable formal tool for computer science on computational intelligence to deal with fuzzy information and uncertain information. BCI-algebras and BCK-algebras are two classes of non-classical logic algebras that are introduced by Iseki in 1966 and they are algebraic formulations of BCK and BCI-system in logic algebras. Lele used the notion of fuzzy point to study some properties of BCI-algebras. Jun and Lele used the notion of fuzzy points for establishing quasi q-ideal in the set of all fuzzy points of a fixed BCI-algebras and give some characterizations of these ideals.</description><subject>Algebra</subject><subject>Applications of Mathematics</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Intelligence</subject><subject>Logic</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Research</subject><issn>2008-1359</issn><issn>2251-7456</issn><issn>2251-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkM1LAzEQxYMoWGqvHmXBi5e0mWTzddRitVAQQc8hyWbLlu1uTboH_3uzVETEeYcZht88hofQNZA5gBILSjlgWXKBs-QZmvwszvNMiMLAuL5Es5R2JJeUmpR8gm5eB5uawuKmCrZNRdMVD8s1tu02uGjTFbqo8zrMvvsUva8e35bPePPytF7eb7Cnmh9xGbwAp0tKGNPMOQJCCQ_UVrpypfaEOy5q8JJKEEE5RYSTwEqogAnmOJuiu5PvIfYfQ0hHs2-SD21ru9APyYCUhBEupMzo7R901w-xy98ZEJwqxpUQmZqfKB_7lGKozSE2exs_DRAzJmbGgMwYkMkabReng5TBbhviL9v_L74AIb1nqw</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Gilani, Alireza</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121201</creationdate><title>Quasi a-ideals in BCI-algebras</title><author>Gilani, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-4ec61b94203393bb01686c12ad9db49c05b56f1c72716e8b806b71341d1363b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Applications of Mathematics</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Intelligence</topic><topic>Logic</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilani, Alireza</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical sciences (Karaj, Iran)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilani, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi a-ideals in BCI-algebras</atitle><jtitle>Mathematical sciences (Karaj, Iran)</jtitle><stitle>Math Sci</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>6</volume><issue>1</issue><spage>1</spage><epage>2</epage><pages>1-2</pages><issn>2008-1359</issn><issn>2251-7456</issn><eissn>2251-7456</eissn><abstract>Non-classical logic has become a considerable formal tool for computer science on computational intelligence to deal with fuzzy information and uncertain information. BCI-algebras and BCK-algebras are two classes of non-classical logic algebras that are introduced by Iseki in 1966 and they are algebraic formulations of BCK and BCI-system in logic algebras. Lele used the notion of fuzzy point to study some properties of BCI-algebras. Jun and Lele used the notion of fuzzy points for establishing quasi q-ideal in the set of all fuzzy points of a fixed BCI-algebras and give some characterizations of these ideals.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1186/2251-7456-6-67</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2008-1359
ispartof Mathematical sciences (Karaj, Iran), 2012-12, Vol.6 (1), p.1-2
issn 2008-1359
2251-7456
2251-7456
language eng
recordid cdi_proquest_miscellaneous_1770305677
source EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings
subjects Algebra
Applications of Mathematics
Fuzzy
Fuzzy logic
Fuzzy set theory
Intelligence
Logic
Mathematical analysis
Mathematics
Mathematics and Statistics
Original Research
title Quasi a-ideals in BCI-algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi%20a-ideals%20in%20BCI-algebras&rft.jtitle=Mathematical%20sciences%20(Karaj,%20Iran)&rft.au=Gilani,%20Alireza&rft.date=2012-12-01&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=2&rft.pages=1-2&rft.issn=2008-1359&rft.eissn=2251-7456&rft_id=info:doi/10.1186/2251-7456-6-67&rft_dat=%3Cproquest_cross%3E3585423511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652835866&rft_id=info:pmid/&rfr_iscdi=true