Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling

This paper reviews the present understanding of electrolytic plasma processes (EPPs) and approaches to their modelling. Based on the EPP type, characteristics and classification, it presents a generalised phenomenological model as the most appropriate one from the process diagnostics and control poi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2015-05, Vol.269, p.2-22
Hauptverfasser: Parfenov, E.V., Yerokhin, A., Nevyantseva, R.R., Gorbatkov, M.V., Liang, C.-J., Matthews, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue
container_start_page 2
container_title Surface & coatings technology
container_volume 269
creator Parfenov, E.V.
Yerokhin, A.
Nevyantseva, R.R.
Gorbatkov, M.V.
Liang, C.-J.
Matthews, A.
description This paper reviews the present understanding of electrolytic plasma processes (EPPs) and approaches to their modelling. Based on the EPP type, characteristics and classification, it presents a generalised phenomenological model as the most appropriate one from the process diagnostics and control point of view. The model describes the system ‘power supply–electrolyser–electrode surface’ as a system with lumped parameters characterising integral properties of the surface layer and integral parameters of the EPP. The complexity of EPPs does not allow the drawing of a set of differential equations describing the treatment, although a model can be formalised for a particular process as a black box regression. Evaluation of dynamic properties reveals the multiscale nature of electrolytic plasma processes, which can be described by three time constants separated by 2–3 orders of magnitude (minutes, seconds and milliseconds), corresponding to different groups of characteristics in the model. Further developments based on the phenomenological approach and providing deeper insights into EPPs are proposed using frequency response methodology and electromagnetic field modelling. Examples demonstrating the efficiency of the proposed approach are supplied for EPP modelling with static and dynamic neural networks, frequency response evaluations and electromagnetic field calculations. •Comprehensive classification of electrolytic plasma surface treatments•Generalised phenomenological model of electrolytic plasma processes•Examples of phenomenological modelling for different processes•Perspectives on development of smart electrolytic plasma technologies
doi_str_mv 10.1016/j.surfcoat.2015.02.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770303040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897215001541</els_id><sourcerecordid>1770303040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-a16ba04640df23a11e021b1c558bb1ab6a1908dbc3a0035f4b4a51350a1e1e053</originalsourceid><addsrcrecordid>eNqFkE1v2zAMhoViBZp1_QuFjr3YJS1_xD0tCNauQIBe0rNAy3SjwLYySWnRfz-12c4FDyTIly_IR4hrhBwB69t9Ho5-MI5iXgBWORQ5YHsmFrhs2kypsvkmFlBUTbZsm-JCfA9hDwDYtOVCTFv3Rr4PMkzko-SRTfRufI_WyMNIqSsjm93sRvdiOdzJ1SzdK_tXy2_SDXLiuHP959TQKOlw8I7MjoOMTqbacAhycj2Po51ffojzgcbAV__ypXi-_7Vd_842Tw-P69UmM2WtYkZYdwRlXUI_FIoQGQrs0FTVsuuQupqwhWXfGUUAqhrKrqQKVQWEnLSVuhQ3J990wZ8jh6gnG0y6gWZ2x6CxaUClKCFJ65PUeBeC50EfvE0s3jWC_uCr9_o_X_3BV0OhE9-0-PO0yOmRhMPrYCzPhnvrE0TdO_uVxV_cEIol</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770303040</pqid></control><display><type>article</type><title>Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling</title><source>Access via ScienceDirect (Elsevier)</source><creator>Parfenov, E.V. ; Yerokhin, A. ; Nevyantseva, R.R. ; Gorbatkov, M.V. ; Liang, C.-J. ; Matthews, A.</creator><creatorcontrib>Parfenov, E.V. ; Yerokhin, A. ; Nevyantseva, R.R. ; Gorbatkov, M.V. ; Liang, C.-J. ; Matthews, A.</creatorcontrib><description>This paper reviews the present understanding of electrolytic plasma processes (EPPs) and approaches to their modelling. Based on the EPP type, characteristics and classification, it presents a generalised phenomenological model as the most appropriate one from the process diagnostics and control point of view. The model describes the system ‘power supply–electrolyser–electrode surface’ as a system with lumped parameters characterising integral properties of the surface layer and integral parameters of the EPP. The complexity of EPPs does not allow the drawing of a set of differential equations describing the treatment, although a model can be formalised for a particular process as a black box regression. Evaluation of dynamic properties reveals the multiscale nature of electrolytic plasma processes, which can be described by three time constants separated by 2–3 orders of magnitude (minutes, seconds and milliseconds), corresponding to different groups of characteristics in the model. Further developments based on the phenomenological approach and providing deeper insights into EPPs are proposed using frequency response methodology and electromagnetic field modelling. Examples demonstrating the efficiency of the proposed approach are supplied for EPP modelling with static and dynamic neural networks, frequency response evaluations and electromagnetic field calculations. •Comprehensive classification of electrolytic plasma surface treatments•Generalised phenomenological model of electrolytic plasma processes•Examples of phenomenological modelling for different processes•Perspectives on development of smart electrolytic plasma technologies</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2015.02.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Dynamic tests ; Dynamics ; Electrolytic plasma processing ; Electromagnetic fields ; Frequency response ; Integrals ; Mathematical models ; Modelling ; Phenomenological model ; Process diagnostics and control ; Smart technology</subject><ispartof>Surface &amp; coatings technology, 2015-05, Vol.269, p.2-22</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-a16ba04640df23a11e021b1c558bb1ab6a1908dbc3a0035f4b4a51350a1e1e053</citedby><cites>FETCH-LOGICAL-c463t-a16ba04640df23a11e021b1c558bb1ab6a1908dbc3a0035f4b4a51350a1e1e053</cites><orcidid>0000-0003-0328-0397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2015.02.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Parfenov, E.V.</creatorcontrib><creatorcontrib>Yerokhin, A.</creatorcontrib><creatorcontrib>Nevyantseva, R.R.</creatorcontrib><creatorcontrib>Gorbatkov, M.V.</creatorcontrib><creatorcontrib>Liang, C.-J.</creatorcontrib><creatorcontrib>Matthews, A.</creatorcontrib><title>Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling</title><title>Surface &amp; coatings technology</title><description>This paper reviews the present understanding of electrolytic plasma processes (EPPs) and approaches to their modelling. Based on the EPP type, characteristics and classification, it presents a generalised phenomenological model as the most appropriate one from the process diagnostics and control point of view. The model describes the system ‘power supply–electrolyser–electrode surface’ as a system with lumped parameters characterising integral properties of the surface layer and integral parameters of the EPP. The complexity of EPPs does not allow the drawing of a set of differential equations describing the treatment, although a model can be formalised for a particular process as a black box regression. Evaluation of dynamic properties reveals the multiscale nature of electrolytic plasma processes, which can be described by three time constants separated by 2–3 orders of magnitude (minutes, seconds and milliseconds), corresponding to different groups of characteristics in the model. Further developments based on the phenomenological approach and providing deeper insights into EPPs are proposed using frequency response methodology and electromagnetic field modelling. Examples demonstrating the efficiency of the proposed approach are supplied for EPP modelling with static and dynamic neural networks, frequency response evaluations and electromagnetic field calculations. •Comprehensive classification of electrolytic plasma surface treatments•Generalised phenomenological model of electrolytic plasma processes•Examples of phenomenological modelling for different processes•Perspectives on development of smart electrolytic plasma technologies</description><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Electrolytic plasma processing</subject><subject>Electromagnetic fields</subject><subject>Frequency response</subject><subject>Integrals</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Phenomenological model</subject><subject>Process diagnostics and control</subject><subject>Smart technology</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v2zAMhoViBZp1_QuFjr3YJS1_xD0tCNauQIBe0rNAy3SjwLYySWnRfz-12c4FDyTIly_IR4hrhBwB69t9Ho5-MI5iXgBWORQ5YHsmFrhs2kypsvkmFlBUTbZsm-JCfA9hDwDYtOVCTFv3Rr4PMkzko-SRTfRufI_WyMNIqSsjm93sRvdiOdzJ1SzdK_tXy2_SDXLiuHP959TQKOlw8I7MjoOMTqbacAhycj2Po51ffojzgcbAV__ypXi-_7Vd_842Tw-P69UmM2WtYkZYdwRlXUI_FIoQGQrs0FTVsuuQupqwhWXfGUUAqhrKrqQKVQWEnLSVuhQ3J990wZ8jh6gnG0y6gWZ2x6CxaUClKCFJ65PUeBeC50EfvE0s3jWC_uCr9_o_X_3BV0OhE9-0-PO0yOmRhMPrYCzPhnvrE0TdO_uVxV_cEIol</recordid><startdate>20150515</startdate><enddate>20150515</enddate><creator>Parfenov, E.V.</creator><creator>Yerokhin, A.</creator><creator>Nevyantseva, R.R.</creator><creator>Gorbatkov, M.V.</creator><creator>Liang, C.-J.</creator><creator>Matthews, A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0328-0397</orcidid></search><sort><creationdate>20150515</creationdate><title>Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling</title><author>Parfenov, E.V. ; Yerokhin, A. ; Nevyantseva, R.R. ; Gorbatkov, M.V. ; Liang, C.-J. ; Matthews, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-a16ba04640df23a11e021b1c558bb1ab6a1908dbc3a0035f4b4a51350a1e1e053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Electrolytic plasma processing</topic><topic>Electromagnetic fields</topic><topic>Frequency response</topic><topic>Integrals</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Phenomenological model</topic><topic>Process diagnostics and control</topic><topic>Smart technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parfenov, E.V.</creatorcontrib><creatorcontrib>Yerokhin, A.</creatorcontrib><creatorcontrib>Nevyantseva, R.R.</creatorcontrib><creatorcontrib>Gorbatkov, M.V.</creatorcontrib><creatorcontrib>Liang, C.-J.</creatorcontrib><creatorcontrib>Matthews, A.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parfenov, E.V.</au><au>Yerokhin, A.</au><au>Nevyantseva, R.R.</au><au>Gorbatkov, M.V.</au><au>Liang, C.-J.</au><au>Matthews, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2015-05-15</date><risdate>2015</risdate><volume>269</volume><spage>2</spage><epage>22</epage><pages>2-22</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>This paper reviews the present understanding of electrolytic plasma processes (EPPs) and approaches to their modelling. Based on the EPP type, characteristics and classification, it presents a generalised phenomenological model as the most appropriate one from the process diagnostics and control point of view. The model describes the system ‘power supply–electrolyser–electrode surface’ as a system with lumped parameters characterising integral properties of the surface layer and integral parameters of the EPP. The complexity of EPPs does not allow the drawing of a set of differential equations describing the treatment, although a model can be formalised for a particular process as a black box regression. Evaluation of dynamic properties reveals the multiscale nature of electrolytic plasma processes, which can be described by three time constants separated by 2–3 orders of magnitude (minutes, seconds and milliseconds), corresponding to different groups of characteristics in the model. Further developments based on the phenomenological approach and providing deeper insights into EPPs are proposed using frequency response methodology and electromagnetic field modelling. Examples demonstrating the efficiency of the proposed approach are supplied for EPP modelling with static and dynamic neural networks, frequency response evaluations and electromagnetic field calculations. •Comprehensive classification of electrolytic plasma surface treatments•Generalised phenomenological model of electrolytic plasma processes•Examples of phenomenological modelling for different processes•Perspectives on development of smart electrolytic plasma technologies</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2015.02.019</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0328-0397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2015-05, Vol.269, p.2-22
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_1770303040
source Access via ScienceDirect (Elsevier)
subjects Dynamic tests
Dynamics
Electrolytic plasma processing
Electromagnetic fields
Frequency response
Integrals
Mathematical models
Modelling
Phenomenological model
Process diagnostics and control
Smart technology
title Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T13%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20smart%20electrolytic%20plasma%20technologies:%20An%20overview%20of%20methodological%20approaches%20to%20process%20modelling&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Parfenov,%20E.V.&rft.date=2015-05-15&rft.volume=269&rft.spage=2&rft.epage=22&rft.pages=2-22&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2015.02.019&rft_dat=%3Cproquest_cross%3E1770303040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770303040&rft_id=info:pmid/&rft_els_id=S0257897215001541&rfr_iscdi=true