P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space

A bstract We study the P − V criticality and phase transition in the extended phase space of charged Gauss-Bonnet black holes in anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black hol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2013-09, Vol.2013 (9), p.1-22, Article 5
Hauptverfasser: Cai, Rong-Gen, Cao, Li-Ming, Li, Li, Yang, Run-Qiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 9
container_start_page 1
container_title The journal of high energy physics
container_volume 2013
creator Cai, Rong-Gen
Cao, Li-Ming
Li, Li
Yang, Run-Qiu
description A bstract We study the P − V criticality and phase transition in the extended phase space of charged Gauss-Bonnet black holes in anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black holes. The black holes can have a Ricci flat ( k  = 0), spherical ( k  = 1), or hyperbolic ( k  = −1) horizon. We find that for the Ricci flat and hyperbolic Gauss-Bonnet black holes, no P − V criticality and phase transition appear, while for the black holes with a spherical horizon, even when the charge of the black hole is absent, the P − V criticality and the small black hole/large black hole phase transition will appear, but it happens only in d  = 5 dimensions; when the charge does not vanish, the P − V criticality and the small black hole/large phase transition always appear in d  = 5 dimensions; in the case of d  ≥ 6, to have the P − V criticality and the small black hole/large black hole phase transition, there exists an upper bound for the parameter , where is the Gauss-Bonnet coefficient and Q is the charge of the black hole. We calculate the critical exponents at the critical point and find that for all cases, they are the same as those in the van der Waals liquid-gas system.
doi_str_mv 10.1007/JHEP09(2013)005
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770300340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770300340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-d4ade311b2a3e1bee2a9d0e2f54809a8396e61cfa3f90164a5678eb49b79d2c93</originalsourceid><addsrcrecordid>eNp1kEFLwzAUgIMoOKdnrwEv81D30qRNc5wyN2XgwOk1pOmr6-zambTg_r0d9TAET-8dvu_x-Ai5ZnDHAOT4eT5dghqFwPgtQHRCBgxCFSRCqtOj_ZxceL8BYBFTMCCrZfBOrSuawpqyaPa0qGizRorfDVYZZnS3Nh6p3xmLtM7pzLTeB_d1VWFD09LYT7quS_QHb5K99uAlOctN6fHqdw7J2-N09TAPFi-zp4fJIrAiipogEyZDzlgaGo4sRQyNygDDPBIJKJNwFWPMbG54roDFwkSxTDAVKpUqC63iQzLq7-5c_dWib_S28BbL0lRYt14zKYEDcAEdevMH3dStq7rvNIujMJFKiqSjxj1lXe29w1zvXLE1bq8Z6ENl3VfWh8q6q9wZ0Bu-I6sPdEd3_1F-ANR2fRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652879748</pqid></control><display><type>article</type><title>P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space</title><source>Springer Nature OA/Free Journals</source><creator>Cai, Rong-Gen ; Cao, Li-Ming ; Li, Li ; Yang, Run-Qiu</creator><creatorcontrib>Cai, Rong-Gen ; Cao, Li-Ming ; Li, Li ; Yang, Run-Qiu</creatorcontrib><description>A bstract We study the P − V criticality and phase transition in the extended phase space of charged Gauss-Bonnet black holes in anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black holes. The black holes can have a Ricci flat ( k  = 0), spherical ( k  = 1), or hyperbolic ( k  = −1) horizon. We find that for the Ricci flat and hyperbolic Gauss-Bonnet black holes, no P − V criticality and phase transition appear, while for the black holes with a spherical horizon, even when the charge of the black hole is absent, the P − V criticality and the small black hole/large black hole phase transition will appear, but it happens only in d  = 5 dimensions; when the charge does not vanish, the P − V criticality and the small black hole/large phase transition always appear in d  = 5 dimensions; in the case of d  ≥ 6, to have the P − V criticality and the small black hole/large black hole phase transition, there exists an upper bound for the parameter , where is the Gauss-Bonnet coefficient and Q is the charge of the black hole. We calculate the critical exponents at the critical point and find that for all cases, they are the same as those in the van der Waals liquid-gas system.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP09(2013)005</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Black holes (astronomy) ; Charge ; Classical and Quantum Gravitation ; Conjugates ; Dynamical systems ; Elementary Particles ; Flats ; High energy physics ; Horizon ; Liquid-gas systems ; Phase transformations ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2013-09, Vol.2013 (9), p.1-22, Article 5</ispartof><rights>SISSA, Trieste, Italy 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-d4ade311b2a3e1bee2a9d0e2f54809a8396e61cfa3f90164a5678eb49b79d2c93</citedby><cites>FETCH-LOGICAL-c455t-d4ade311b2a3e1bee2a9d0e2f54809a8396e61cfa3f90164a5678eb49b79d2c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP09(2013)005$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/JHEP09(2013)005$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP09(2013)005$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Cai, Rong-Gen</creatorcontrib><creatorcontrib>Cao, Li-Ming</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Yang, Run-Qiu</creatorcontrib><title>P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We study the P − V criticality and phase transition in the extended phase space of charged Gauss-Bonnet black holes in anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black holes. The black holes can have a Ricci flat ( k  = 0), spherical ( k  = 1), or hyperbolic ( k  = −1) horizon. We find that for the Ricci flat and hyperbolic Gauss-Bonnet black holes, no P − V criticality and phase transition appear, while for the black holes with a spherical horizon, even when the charge of the black hole is absent, the P − V criticality and the small black hole/large black hole phase transition will appear, but it happens only in d  = 5 dimensions; when the charge does not vanish, the P − V criticality and the small black hole/large phase transition always appear in d  = 5 dimensions; in the case of d  ≥ 6, to have the P − V criticality and the small black hole/large black hole phase transition, there exists an upper bound for the parameter , where is the Gauss-Bonnet coefficient and Q is the charge of the black hole. We calculate the critical exponents at the critical point and find that for all cases, they are the same as those in the van der Waals liquid-gas system.</description><subject>Black holes (astronomy)</subject><subject>Charge</subject><subject>Classical and Quantum Gravitation</subject><subject>Conjugates</subject><subject>Dynamical systems</subject><subject>Elementary Particles</subject><subject>Flats</subject><subject>High energy physics</subject><subject>Horizon</subject><subject>Liquid-gas systems</subject><subject>Phase transformations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFLwzAUgIMoOKdnrwEv81D30qRNc5wyN2XgwOk1pOmr6-zambTg_r0d9TAET-8dvu_x-Ai5ZnDHAOT4eT5dghqFwPgtQHRCBgxCFSRCqtOj_ZxceL8BYBFTMCCrZfBOrSuawpqyaPa0qGizRorfDVYZZnS3Nh6p3xmLtM7pzLTeB_d1VWFD09LYT7quS_QHb5K99uAlOctN6fHqdw7J2-N09TAPFi-zp4fJIrAiipogEyZDzlgaGo4sRQyNygDDPBIJKJNwFWPMbG54roDFwkSxTDAVKpUqC63iQzLq7-5c_dWib_S28BbL0lRYt14zKYEDcAEdevMH3dStq7rvNIujMJFKiqSjxj1lXe29w1zvXLE1bq8Z6ENl3VfWh8q6q9wZ0Bu-I6sPdEd3_1F-ANR2fRw</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Cai, Rong-Gen</creator><creator>Cao, Li-Ming</creator><creator>Li, Li</creator><creator>Yang, Run-Qiu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space</title><author>Cai, Rong-Gen ; Cao, Li-Ming ; Li, Li ; Yang, Run-Qiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-d4ade311b2a3e1bee2a9d0e2f54809a8396e61cfa3f90164a5678eb49b79d2c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Black holes (astronomy)</topic><topic>Charge</topic><topic>Classical and Quantum Gravitation</topic><topic>Conjugates</topic><topic>Dynamical systems</topic><topic>Elementary Particles</topic><topic>Flats</topic><topic>High energy physics</topic><topic>Horizon</topic><topic>Liquid-gas systems</topic><topic>Phase transformations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Rong-Gen</creatorcontrib><creatorcontrib>Cao, Li-Ming</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Yang, Run-Qiu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cai, Rong-Gen</au><au>Cao, Li-Ming</au><au>Li, Li</au><au>Yang, Run-Qiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>2013</volume><issue>9</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><artnum>5</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We study the P − V criticality and phase transition in the extended phase space of charged Gauss-Bonnet black holes in anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black holes. The black holes can have a Ricci flat ( k  = 0), spherical ( k  = 1), or hyperbolic ( k  = −1) horizon. We find that for the Ricci flat and hyperbolic Gauss-Bonnet black holes, no P − V criticality and phase transition appear, while for the black holes with a spherical horizon, even when the charge of the black hole is absent, the P − V criticality and the small black hole/large black hole phase transition will appear, but it happens only in d  = 5 dimensions; when the charge does not vanish, the P − V criticality and the small black hole/large phase transition always appear in d  = 5 dimensions; in the case of d  ≥ 6, to have the P − V criticality and the small black hole/large black hole phase transition, there exists an upper bound for the parameter , where is the Gauss-Bonnet coefficient and Q is the charge of the black hole. We calculate the critical exponents at the critical point and find that for all cases, they are the same as those in the van der Waals liquid-gas system.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP09(2013)005</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2013-09, Vol.2013 (9), p.1-22, Article 5
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_miscellaneous_1770300340
source Springer Nature OA/Free Journals
subjects Black holes (astronomy)
Charge
Classical and Quantum Gravitation
Conjugates
Dynamical systems
Elementary Particles
Flats
High energy physics
Horizon
Liquid-gas systems
Phase transformations
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
String Theory
title P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P-V%20criticality%20in%20the%20extended%20phase%20space%20of%20Gauss-Bonnet%20black%20holes%20in%20AdS%20space&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Cai,%20Rong-Gen&rft.date=2013-09-01&rft.volume=2013&rft.issue=9&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.artnum=5&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP09(2013)005&rft_dat=%3Cproquest_C6C%3E1770300340%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652879748&rft_id=info:pmid/&rfr_iscdi=true