Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet
This paper presents a computational fluid dynamics (CFD) methodology to accurately predict the heat transfer characteristics of an unconfined steady impinging air jet in the transitional flow regime, impinging on a planar constant-temperature surface. The CFD methodology is validated using detailed...
Gespeichert in:
Veröffentlicht in: | Journal of heat transfer 2014-09, Vol.136 (9) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Journal of heat transfer |
container_volume | 136 |
creator | Alimohammadi, Sajad Murray, Darina B Persoons, Tim |
description | This paper presents a computational fluid dynamics (CFD) methodology to accurately predict the heat transfer characteristics of an unconfined steady impinging air jet in the transitional flow regime, impinging on a planar constant-temperature surface. The CFD methodology is validated using detailed experimental measurements of the local surface heat transfer coefficient. The numerical model employs a transitional turbulence model which captures the laminar–turbulent transition in the wall jet which precisely predicts the intensity and extent of the secondary peak in the radial Nusselt number distribution. The paper proposes a computationally low-cost turbulence model which yields the most accurate results for a wide range of operating and geometrical conditions. A detailed analysis of the effect of mesh grid size and properties, inflow conditions, turbulence model, and turbulent Prandtl number Prt is presented. The numerical uncertainty is quantified by the grid convergence index (GCI) method. In the range of Reynolds number 6000 ≤ Re ≤ 14,000 and nozzle-to-surface distance 1 ≤ H/D ≤ 6, the model is in excellent agreement with the experimental data. For the case of H/D = 1 and Re = 14,000, the maximum deviations are 5%, 3%, and 2% in terms of local, area-averaged and stagnation point Nusselt numbers, respectively. Experimental and numerical correlations are presented for the stagnation point Nusselt number. |
doi_str_mv | 10.1115/1.4027840 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770299556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770299556</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-8b43bd0abc21ad206b3a68b1947a195abf7776ee5f6e154f8b24f51d90ff3df83</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK4ePHvJUQ_VTJM26VHWXT9QPPhxDdM20Urb1CRF93f4h62uCAMDM8_MCw8hh8BOASA7g1PBUqkE2yIzyFKVqELwbTJjLE0TEAp2yV4Ib4wB56KYka_l52B805k-YkufsW1qjI3rqbMU6cJ1wxh_B9N21Y5NTS_WPXZNFeidia-udq17WVPrPH302Ifmn3Uf9Mpg3Iyt8XTxih6rOKWF-HP_m_AQDdZret0NTf8yFb0xcZ_sWGyDOfjrc_K0Wj4urpLb-8vrxfltghxkTFQpeFkzLKsUsE5ZXnLMVQmFkAhFhqWVUubGZDY3kAmrylTYDOqCWctrq_icHG_-Dt69jyZE3TWhMm2LvXFj0CAlS4siy_IJPdmglXcheGP1MElDv9bA9I94DfpP_MQebVgMndFvbvSTkKC5FKqQ_Bs1n4El</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770299556</pqid></control><display><type>article</type><title>Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet</title><source>Alma/SFX Local Collection</source><source>ASME Transactions Journals (Current)</source><creator>Alimohammadi, Sajad ; Murray, Darina B ; Persoons, Tim</creator><creatorcontrib>Alimohammadi, Sajad ; Murray, Darina B ; Persoons, Tim</creatorcontrib><description>This paper presents a computational fluid dynamics (CFD) methodology to accurately predict the heat transfer characteristics of an unconfined steady impinging air jet in the transitional flow regime, impinging on a planar constant-temperature surface. The CFD methodology is validated using detailed experimental measurements of the local surface heat transfer coefficient. The numerical model employs a transitional turbulence model which captures the laminar–turbulent transition in the wall jet which precisely predicts the intensity and extent of the secondary peak in the radial Nusselt number distribution. The paper proposes a computationally low-cost turbulence model which yields the most accurate results for a wide range of operating and geometrical conditions. A detailed analysis of the effect of mesh grid size and properties, inflow conditions, turbulence model, and turbulent Prandtl number Prt is presented. The numerical uncertainty is quantified by the grid convergence index (GCI) method. In the range of Reynolds number 6000 ≤ Re ≤ 14,000 and nozzle-to-surface distance 1 ≤ H/D ≤ 6, the model is in excellent agreement with the experimental data. For the case of H/D = 1 and Re = 14,000, the maximum deviations are 5%, 3%, and 2% in terms of local, area-averaged and stagnation point Nusselt numbers, respectively. Experimental and numerical correlations are presented for the stagnation point Nusselt number.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.4027840</identifier><language>eng</language><publisher>ASME</publisher><subject>Computational fluid dynamics ; Fluid flow ; Forced Convection ; Heat transfer ; Mathematical models ; Methodology ; Nusselt number ; Turbulence ; Turbulence models ; Turbulent flow</subject><ispartof>Journal of heat transfer, 2014-09, Vol.136 (9)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-8b43bd0abc21ad206b3a68b1947a195abf7776ee5f6e154f8b24f51d90ff3df83</citedby><cites>FETCH-LOGICAL-a317t-8b43bd0abc21ad206b3a68b1947a195abf7776ee5f6e154f8b24f51d90ff3df83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids></links><search><creatorcontrib>Alimohammadi, Sajad</creatorcontrib><creatorcontrib>Murray, Darina B</creatorcontrib><creatorcontrib>Persoons, Tim</creatorcontrib><title>Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><description>This paper presents a computational fluid dynamics (CFD) methodology to accurately predict the heat transfer characteristics of an unconfined steady impinging air jet in the transitional flow regime, impinging on a planar constant-temperature surface. The CFD methodology is validated using detailed experimental measurements of the local surface heat transfer coefficient. The numerical model employs a transitional turbulence model which captures the laminar–turbulent transition in the wall jet which precisely predicts the intensity and extent of the secondary peak in the radial Nusselt number distribution. The paper proposes a computationally low-cost turbulence model which yields the most accurate results for a wide range of operating and geometrical conditions. A detailed analysis of the effect of mesh grid size and properties, inflow conditions, turbulence model, and turbulent Prandtl number Prt is presented. The numerical uncertainty is quantified by the grid convergence index (GCI) method. In the range of Reynolds number 6000 ≤ Re ≤ 14,000 and nozzle-to-surface distance 1 ≤ H/D ≤ 6, the model is in excellent agreement with the experimental data. For the case of H/D = 1 and Re = 14,000, the maximum deviations are 5%, 3%, and 2% in terms of local, area-averaged and stagnation point Nusselt numbers, respectively. Experimental and numerical correlations are presented for the stagnation point Nusselt number.</description><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Forced Convection</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Nusselt number</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK4ePHvJUQ_VTJM26VHWXT9QPPhxDdM20Urb1CRF93f4h62uCAMDM8_MCw8hh8BOASA7g1PBUqkE2yIzyFKVqELwbTJjLE0TEAp2yV4Ib4wB56KYka_l52B805k-YkufsW1qjI3rqbMU6cJ1wxh_B9N21Y5NTS_WPXZNFeidia-udq17WVPrPH302Ifmn3Uf9Mpg3Iyt8XTxih6rOKWF-HP_m_AQDdZret0NTf8yFb0xcZ_sWGyDOfjrc_K0Wj4urpLb-8vrxfltghxkTFQpeFkzLKsUsE5ZXnLMVQmFkAhFhqWVUubGZDY3kAmrylTYDOqCWctrq_icHG_-Dt69jyZE3TWhMm2LvXFj0CAlS4siy_IJPdmglXcheGP1MElDv9bA9I94DfpP_MQebVgMndFvbvSTkKC5FKqQ_Bs1n4El</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Alimohammadi, Sajad</creator><creator>Murray, Darina B</creator><creator>Persoons, Tim</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140901</creationdate><title>Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet</title><author>Alimohammadi, Sajad ; Murray, Darina B ; Persoons, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-8b43bd0abc21ad206b3a68b1947a195abf7776ee5f6e154f8b24f51d90ff3df83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Forced Convection</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Nusselt number</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alimohammadi, Sajad</creatorcontrib><creatorcontrib>Murray, Darina B</creatorcontrib><creatorcontrib>Persoons, Tim</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alimohammadi, Sajad</au><au>Murray, Darina B</au><au>Persoons, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>136</volume><issue>9</issue><issn>0022-1481</issn><eissn>1528-8943</eissn><abstract>This paper presents a computational fluid dynamics (CFD) methodology to accurately predict the heat transfer characteristics of an unconfined steady impinging air jet in the transitional flow regime, impinging on a planar constant-temperature surface. The CFD methodology is validated using detailed experimental measurements of the local surface heat transfer coefficient. The numerical model employs a transitional turbulence model which captures the laminar–turbulent transition in the wall jet which precisely predicts the intensity and extent of the secondary peak in the radial Nusselt number distribution. The paper proposes a computationally low-cost turbulence model which yields the most accurate results for a wide range of operating and geometrical conditions. A detailed analysis of the effect of mesh grid size and properties, inflow conditions, turbulence model, and turbulent Prandtl number Prt is presented. The numerical uncertainty is quantified by the grid convergence index (GCI) method. In the range of Reynolds number 6000 ≤ Re ≤ 14,000 and nozzle-to-surface distance 1 ≤ H/D ≤ 6, the model is in excellent agreement with the experimental data. For the case of H/D = 1 and Re = 14,000, the maximum deviations are 5%, 3%, and 2% in terms of local, area-averaged and stagnation point Nusselt numbers, respectively. Experimental and numerical correlations are presented for the stagnation point Nusselt number.</abstract><pub>ASME</pub><doi>10.1115/1.4027840</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1481 |
ispartof | Journal of heat transfer, 2014-09, Vol.136 (9) |
issn | 0022-1481 1528-8943 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770299556 |
source | Alma/SFX Local Collection; ASME Transactions Journals (Current) |
subjects | Computational fluid dynamics Fluid flow Forced Convection Heat transfer Mathematical models Methodology Nusselt number Turbulence Turbulence models Turbulent flow |
title | Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Validation%20of%20a%20Computational%20Fluid%20Dynamics%20Methodology%20for%20Transitional%20Flow%20Heat%20Transfer%20Characteristics%20of%20a%20Steady%20Impinging%20Jet&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Alimohammadi,%20Sajad&rft.date=2014-09-01&rft.volume=136&rft.issue=9&rft.issn=0022-1481&rft.eissn=1528-8943&rft_id=info:doi/10.1115/1.4027840&rft_dat=%3Cproquest_cross%3E1770299556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770299556&rft_id=info:pmid/&rfr_iscdi=true |