Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet

This paper presents a computational fluid dynamics (CFD) methodology to accurately predict the heat transfer characteristics of an unconfined steady impinging air jet in the transitional flow regime, impinging on a planar constant-temperature surface. The CFD methodology is validated using detailed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2014-09, Vol.136 (9)
Hauptverfasser: Alimohammadi, Sajad, Murray, Darina B, Persoons, Tim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Journal of heat transfer
container_volume 136
creator Alimohammadi, Sajad
Murray, Darina B
Persoons, Tim
description This paper presents a computational fluid dynamics (CFD) methodology to accurately predict the heat transfer characteristics of an unconfined steady impinging air jet in the transitional flow regime, impinging on a planar constant-temperature surface. The CFD methodology is validated using detailed experimental measurements of the local surface heat transfer coefficient. The numerical model employs a transitional turbulence model which captures the laminar–turbulent transition in the wall jet which precisely predicts the intensity and extent of the secondary peak in the radial Nusselt number distribution. The paper proposes a computationally low-cost turbulence model which yields the most accurate results for a wide range of operating and geometrical conditions. A detailed analysis of the effect of mesh grid size and properties, inflow conditions, turbulence model, and turbulent Prandtl number Prt is presented. The numerical uncertainty is quantified by the grid convergence index (GCI) method. In the range of Reynolds number 6000 ≤ Re ≤ 14,000 and nozzle-to-surface distance 1 ≤ H/D ≤ 6, the model is in excellent agreement with the experimental data. For the case of H/D = 1 and Re = 14,000, the maximum deviations are 5%, 3%, and 2% in terms of local, area-averaged and stagnation point Nusselt numbers, respectively. Experimental and numerical correlations are presented for the stagnation point Nusselt number.
doi_str_mv 10.1115/1.4027840
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770299556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770299556</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-8b43bd0abc21ad206b3a68b1947a195abf7776ee5f6e154f8b24f51d90ff3df83</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK4ePHvJUQ_VTJM26VHWXT9QPPhxDdM20Urb1CRF93f4h62uCAMDM8_MCw8hh8BOASA7g1PBUqkE2yIzyFKVqELwbTJjLE0TEAp2yV4Ib4wB56KYka_l52B805k-YkufsW1qjI3rqbMU6cJ1wxh_B9N21Y5NTS_WPXZNFeidia-udq17WVPrPH302Ifmn3Uf9Mpg3Iyt8XTxih6rOKWF-HP_m_AQDdZret0NTf8yFb0xcZ_sWGyDOfjrc_K0Wj4urpLb-8vrxfltghxkTFQpeFkzLKsUsE5ZXnLMVQmFkAhFhqWVUubGZDY3kAmrylTYDOqCWctrq_icHG_-Dt69jyZE3TWhMm2LvXFj0CAlS4siy_IJPdmglXcheGP1MElDv9bA9I94DfpP_MQebVgMndFvbvSTkKC5FKqQ_Bs1n4El</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770299556</pqid></control><display><type>article</type><title>Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet</title><source>Alma/SFX Local Collection</source><source>ASME Transactions Journals (Current)</source><creator>Alimohammadi, Sajad ; Murray, Darina B ; Persoons, Tim</creator><creatorcontrib>Alimohammadi, Sajad ; Murray, Darina B ; Persoons, Tim</creatorcontrib><description>This paper presents a computational fluid dynamics (CFD) methodology to accurately predict the heat transfer characteristics of an unconfined steady impinging air jet in the transitional flow regime, impinging on a planar constant-temperature surface. The CFD methodology is validated using detailed experimental measurements of the local surface heat transfer coefficient. The numerical model employs a transitional turbulence model which captures the laminar–turbulent transition in the wall jet which precisely predicts the intensity and extent of the secondary peak in the radial Nusselt number distribution. The paper proposes a computationally low-cost turbulence model which yields the most accurate results for a wide range of operating and geometrical conditions. A detailed analysis of the effect of mesh grid size and properties, inflow conditions, turbulence model, and turbulent Prandtl number Prt is presented. The numerical uncertainty is quantified by the grid convergence index (GCI) method. In the range of Reynolds number 6000 ≤ Re ≤ 14,000 and nozzle-to-surface distance 1 ≤ H/D ≤ 6, the model is in excellent agreement with the experimental data. For the case of H/D = 1 and Re = 14,000, the maximum deviations are 5%, 3%, and 2% in terms of local, area-averaged and stagnation point Nusselt numbers, respectively. Experimental and numerical correlations are presented for the stagnation point Nusselt number.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.4027840</identifier><language>eng</language><publisher>ASME</publisher><subject>Computational fluid dynamics ; Fluid flow ; Forced Convection ; Heat transfer ; Mathematical models ; Methodology ; Nusselt number ; Turbulence ; Turbulence models ; Turbulent flow</subject><ispartof>Journal of heat transfer, 2014-09, Vol.136 (9)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-8b43bd0abc21ad206b3a68b1947a195abf7776ee5f6e154f8b24f51d90ff3df83</citedby><cites>FETCH-LOGICAL-a317t-8b43bd0abc21ad206b3a68b1947a195abf7776ee5f6e154f8b24f51d90ff3df83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids></links><search><creatorcontrib>Alimohammadi, Sajad</creatorcontrib><creatorcontrib>Murray, Darina B</creatorcontrib><creatorcontrib>Persoons, Tim</creatorcontrib><title>Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><description>This paper presents a computational fluid dynamics (CFD) methodology to accurately predict the heat transfer characteristics of an unconfined steady impinging air jet in the transitional flow regime, impinging on a planar constant-temperature surface. The CFD methodology is validated using detailed experimental measurements of the local surface heat transfer coefficient. The numerical model employs a transitional turbulence model which captures the laminar–turbulent transition in the wall jet which precisely predicts the intensity and extent of the secondary peak in the radial Nusselt number distribution. The paper proposes a computationally low-cost turbulence model which yields the most accurate results for a wide range of operating and geometrical conditions. A detailed analysis of the effect of mesh grid size and properties, inflow conditions, turbulence model, and turbulent Prandtl number Prt is presented. The numerical uncertainty is quantified by the grid convergence index (GCI) method. In the range of Reynolds number 6000 ≤ Re ≤ 14,000 and nozzle-to-surface distance 1 ≤ H/D ≤ 6, the model is in excellent agreement with the experimental data. For the case of H/D = 1 and Re = 14,000, the maximum deviations are 5%, 3%, and 2% in terms of local, area-averaged and stagnation point Nusselt numbers, respectively. Experimental and numerical correlations are presented for the stagnation point Nusselt number.</description><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Forced Convection</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Nusselt number</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK4ePHvJUQ_VTJM26VHWXT9QPPhxDdM20Urb1CRF93f4h62uCAMDM8_MCw8hh8BOASA7g1PBUqkE2yIzyFKVqELwbTJjLE0TEAp2yV4Ib4wB56KYka_l52B805k-YkufsW1qjI3rqbMU6cJ1wxh_B9N21Y5NTS_WPXZNFeidia-udq17WVPrPH302Ifmn3Uf9Mpg3Iyt8XTxih6rOKWF-HP_m_AQDdZret0NTf8yFb0xcZ_sWGyDOfjrc_K0Wj4urpLb-8vrxfltghxkTFQpeFkzLKsUsE5ZXnLMVQmFkAhFhqWVUubGZDY3kAmrylTYDOqCWctrq_icHG_-Dt69jyZE3TWhMm2LvXFj0CAlS4siy_IJPdmglXcheGP1MElDv9bA9I94DfpP_MQebVgMndFvbvSTkKC5FKqQ_Bs1n4El</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Alimohammadi, Sajad</creator><creator>Murray, Darina B</creator><creator>Persoons, Tim</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140901</creationdate><title>Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet</title><author>Alimohammadi, Sajad ; Murray, Darina B ; Persoons, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-8b43bd0abc21ad206b3a68b1947a195abf7776ee5f6e154f8b24f51d90ff3df83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Forced Convection</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Nusselt number</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alimohammadi, Sajad</creatorcontrib><creatorcontrib>Murray, Darina B</creatorcontrib><creatorcontrib>Persoons, Tim</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alimohammadi, Sajad</au><au>Murray, Darina B</au><au>Persoons, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>136</volume><issue>9</issue><issn>0022-1481</issn><eissn>1528-8943</eissn><abstract>This paper presents a computational fluid dynamics (CFD) methodology to accurately predict the heat transfer characteristics of an unconfined steady impinging air jet in the transitional flow regime, impinging on a planar constant-temperature surface. The CFD methodology is validated using detailed experimental measurements of the local surface heat transfer coefficient. The numerical model employs a transitional turbulence model which captures the laminar–turbulent transition in the wall jet which precisely predicts the intensity and extent of the secondary peak in the radial Nusselt number distribution. The paper proposes a computationally low-cost turbulence model which yields the most accurate results for a wide range of operating and geometrical conditions. A detailed analysis of the effect of mesh grid size and properties, inflow conditions, turbulence model, and turbulent Prandtl number Prt is presented. The numerical uncertainty is quantified by the grid convergence index (GCI) method. In the range of Reynolds number 6000 ≤ Re ≤ 14,000 and nozzle-to-surface distance 1 ≤ H/D ≤ 6, the model is in excellent agreement with the experimental data. For the case of H/D = 1 and Re = 14,000, the maximum deviations are 5%, 3%, and 2% in terms of local, area-averaged and stagnation point Nusselt numbers, respectively. Experimental and numerical correlations are presented for the stagnation point Nusselt number.</abstract><pub>ASME</pub><doi>10.1115/1.4027840</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1481
ispartof Journal of heat transfer, 2014-09, Vol.136 (9)
issn 0022-1481
1528-8943
language eng
recordid cdi_proquest_miscellaneous_1770299556
source Alma/SFX Local Collection; ASME Transactions Journals (Current)
subjects Computational fluid dynamics
Fluid flow
Forced Convection
Heat transfer
Mathematical models
Methodology
Nusselt number
Turbulence
Turbulence models
Turbulent flow
title Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Validation%20of%20a%20Computational%20Fluid%20Dynamics%20Methodology%20for%20Transitional%20Flow%20Heat%20Transfer%20Characteristics%20of%20a%20Steady%20Impinging%20Jet&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Alimohammadi,%20Sajad&rft.date=2014-09-01&rft.volume=136&rft.issue=9&rft.issn=0022-1481&rft.eissn=1528-8943&rft_id=info:doi/10.1115/1.4027840&rft_dat=%3Cproquest_cross%3E1770299556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770299556&rft_id=info:pmid/&rfr_iscdi=true