Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry
Abstract Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologica...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2015-05, Vol.50, p.30-37 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | |
container_start_page | 30 |
container_title | Biomaterials |
container_volume | 50 |
creator | Desai, Rajiv M Koshy, Sandeep T Hilderbrand, Scott A Mooney, David J Joshi, Neel S |
description | Abstract Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologically harmful due to their lack of chemoselectivity. In this work we introduce tetrazine and norbornene groups to alginate polymer chains and subsequently form covalently crosslinked click alginate hydrogels capable of encapsulating cells without damaging them. The rapid, bioorthogonal, and specific click reaction is irreversible and allows for easy incorporation of cells with high post-encapsulation viability. The swelling and mechanical properties of the click alginate hydrogel can be tuned via the total polymer concentration and the stoichiometric ratio of the complementary click functional groups. The click alginate hydrogel can be modified after gelation to display cell adhesion peptides for 2D cell culture using thiol-ene chemistry. Furthermore, click alginate hydrogels are minimally inflammatory, maintain structural integrity over several months, and reject cell infiltration when injected subcutaneously in mice. Click alginate hydrogels combine the numerous benefits of alginate hydrogels with powerful bioorthogonal click chemistry for use in tissue engineering applications involving the stable encapsulation or delivery of cells or bioactive molecules. |
doi_str_mv | 10.1016/j.biomaterials.2015.01.048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770299073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961215000654</els_id><sourcerecordid>1660926483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-9d49771376d6e799ec448e37ec7633148a515392a258d9f409716b6d2420ea443</originalsourceid><addsrcrecordid>eNqNks1uEzEQxy0EoqHwCmjFicsu4-81ByRUKCBV4lDgajneSevE8RZ7UymceIe-IU-ClxSEuNDTyNL_Y-TfEPKMQkeBqhfrbhnGrZswBxdLx4DKDmgHor9HFrTXfSsNyPtkAVSw1ijKjsijUtZQ3yDYQ3LEpOZKGL4g518wFzeFiI2PwW8aFy9CqtnN5X7I4wXG0vg8lhJD2uDQXAfXTDhl9y0k_PH9Jo15OeaEqfovcRvKlPePyYNVXQyf3M5j8vn07aeT9-3Zx3cfTl6ftV5KPrVmEEZryrUaFGpj0AvRI9foteKcit5JKrlhjsl-MCsBRlO1VAMTDNAJwY_J80PuVR6_7rBMtvZ7jNElHHfFUq2BGQOa30HKtNK9pvr_UqXAMCX6OfXlQfrrhzKu7FUOW5f3loKdUdm1_RuVnVFZoLaiquantz275RaHP9bfbKrgzUFQGeB1wGyLD5g8DiGjn-wwhrv1vPonpoJOwbu4wT2W9bjLafZQW5gFez4fzXwzVAKAkoL_BEPswQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660926483</pqid></control><display><type>article</type><title>Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Desai, Rajiv M ; Koshy, Sandeep T ; Hilderbrand, Scott A ; Mooney, David J ; Joshi, Neel S</creator><creatorcontrib>Desai, Rajiv M ; Koshy, Sandeep T ; Hilderbrand, Scott A ; Mooney, David J ; Joshi, Neel S</creatorcontrib><description>Abstract Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologically harmful due to their lack of chemoselectivity. In this work we introduce tetrazine and norbornene groups to alginate polymer chains and subsequently form covalently crosslinked click alginate hydrogels capable of encapsulating cells without damaging them. The rapid, bioorthogonal, and specific click reaction is irreversible and allows for easy incorporation of cells with high post-encapsulation viability. The swelling and mechanical properties of the click alginate hydrogel can be tuned via the total polymer concentration and the stoichiometric ratio of the complementary click functional groups. The click alginate hydrogel can be modified after gelation to display cell adhesion peptides for 2D cell culture using thiol-ene chemistry. Furthermore, click alginate hydrogels are minimally inflammatory, maintain structural integrity over several months, and reject cell infiltration when injected subcutaneously in mice. Click alginate hydrogels combine the numerous benefits of alginate hydrogels with powerful bioorthogonal click chemistry for use in tissue engineering applications involving the stable encapsulation or delivery of cells or bioactive molecules.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.01.048</identifier><identifier>PMID: 25736493</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Alginate ; Alginates ; Alginates - chemical synthesis ; Alginates - chemistry ; Alginates - pharmacology ; Animals ; Biomedical materials ; Cell adhesion ; Cell Adhesion - drug effects ; Cell encapsulation ; Cell Proliferation - drug effects ; Cells, Immobilized - drug effects ; Cells, Immobilized - metabolism ; Click chemistry ; Click Chemistry - methods ; Compressive Strength - drug effects ; Covalence ; Cross-Linking Reagents - chemistry ; Crosslinking ; Dentistry ; Drug delivery systems ; Elastic Modulus - drug effects ; Female ; Glucuronic Acid - chemical synthesis ; Glucuronic Acid - chemistry ; Glucuronic Acid - pharmacology ; Heterocyclic Compounds, 1-Ring - chemistry ; Hexuronic Acids - chemical synthesis ; Hexuronic Acids - chemistry ; Hexuronic Acids - pharmacology ; Hydrogel ; Hydrogels ; Hydrogels - pharmacology ; Injections ; Mice ; Mice, Inbred C57BL ; NIH 3T3 Cells ; Norbornanes - chemistry ; Oligopeptides - pharmacology ; Synthesis (chemistry) ; Tissue engineering</subject><ispartof>Biomaterials, 2015-05, Vol.50, p.30-37</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-9d49771376d6e799ec448e37ec7633148a515392a258d9f409716b6d2420ea443</citedby><cites>FETCH-LOGICAL-c553t-9d49771376d6e799ec448e37ec7633148a515392a258d9f409716b6d2420ea443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2015.01.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25736493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Desai, Rajiv M</creatorcontrib><creatorcontrib>Koshy, Sandeep T</creatorcontrib><creatorcontrib>Hilderbrand, Scott A</creatorcontrib><creatorcontrib>Mooney, David J</creatorcontrib><creatorcontrib>Joshi, Neel S</creatorcontrib><title>Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologically harmful due to their lack of chemoselectivity. In this work we introduce tetrazine and norbornene groups to alginate polymer chains and subsequently form covalently crosslinked click alginate hydrogels capable of encapsulating cells without damaging them. The rapid, bioorthogonal, and specific click reaction is irreversible and allows for easy incorporation of cells with high post-encapsulation viability. The swelling and mechanical properties of the click alginate hydrogel can be tuned via the total polymer concentration and the stoichiometric ratio of the complementary click functional groups. The click alginate hydrogel can be modified after gelation to display cell adhesion peptides for 2D cell culture using thiol-ene chemistry. Furthermore, click alginate hydrogels are minimally inflammatory, maintain structural integrity over several months, and reject cell infiltration when injected subcutaneously in mice. Click alginate hydrogels combine the numerous benefits of alginate hydrogels with powerful bioorthogonal click chemistry for use in tissue engineering applications involving the stable encapsulation or delivery of cells or bioactive molecules.</description><subject>Advanced Basic Science</subject><subject>Alginate</subject><subject>Alginates</subject><subject>Alginates - chemical synthesis</subject><subject>Alginates - chemistry</subject><subject>Alginates - pharmacology</subject><subject>Animals</subject><subject>Biomedical materials</subject><subject>Cell adhesion</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell encapsulation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Immobilized - drug effects</subject><subject>Cells, Immobilized - metabolism</subject><subject>Click chemistry</subject><subject>Click Chemistry - methods</subject><subject>Compressive Strength - drug effects</subject><subject>Covalence</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Crosslinking</subject><subject>Dentistry</subject><subject>Drug delivery systems</subject><subject>Elastic Modulus - drug effects</subject><subject>Female</subject><subject>Glucuronic Acid - chemical synthesis</subject><subject>Glucuronic Acid - chemistry</subject><subject>Glucuronic Acid - pharmacology</subject><subject>Heterocyclic Compounds, 1-Ring - chemistry</subject><subject>Hexuronic Acids - chemical synthesis</subject><subject>Hexuronic Acids - chemistry</subject><subject>Hexuronic Acids - pharmacology</subject><subject>Hydrogel</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>Injections</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>NIH 3T3 Cells</subject><subject>Norbornanes - chemistry</subject><subject>Oligopeptides - pharmacology</subject><subject>Synthesis (chemistry)</subject><subject>Tissue engineering</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1uEzEQxy0EoqHwCmjFicsu4-81ByRUKCBV4lDgajneSevE8RZ7UymceIe-IU-ClxSEuNDTyNL_Y-TfEPKMQkeBqhfrbhnGrZswBxdLx4DKDmgHor9HFrTXfSsNyPtkAVSw1ijKjsijUtZQ3yDYQ3LEpOZKGL4g518wFzeFiI2PwW8aFy9CqtnN5X7I4wXG0vg8lhJD2uDQXAfXTDhl9y0k_PH9Jo15OeaEqfovcRvKlPePyYNVXQyf3M5j8vn07aeT9-3Zx3cfTl6ftV5KPrVmEEZryrUaFGpj0AvRI9foteKcit5JKrlhjsl-MCsBRlO1VAMTDNAJwY_J80PuVR6_7rBMtvZ7jNElHHfFUq2BGQOa30HKtNK9pvr_UqXAMCX6OfXlQfrrhzKu7FUOW5f3loKdUdm1_RuVnVFZoLaiquantz275RaHP9bfbKrgzUFQGeB1wGyLD5g8DiGjn-wwhrv1vPonpoJOwbu4wT2W9bjLafZQW5gFez4fzXwzVAKAkoL_BEPswQg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Desai, Rajiv M</creator><creator>Koshy, Sandeep T</creator><creator>Hilderbrand, Scott A</creator><creator>Mooney, David J</creator><creator>Joshi, Neel S</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150501</creationdate><title>Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry</title><author>Desai, Rajiv M ; Koshy, Sandeep T ; Hilderbrand, Scott A ; Mooney, David J ; Joshi, Neel S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-9d49771376d6e799ec448e37ec7633148a515392a258d9f409716b6d2420ea443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Advanced Basic Science</topic><topic>Alginate</topic><topic>Alginates</topic><topic>Alginates - chemical synthesis</topic><topic>Alginates - chemistry</topic><topic>Alginates - pharmacology</topic><topic>Animals</topic><topic>Biomedical materials</topic><topic>Cell adhesion</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell encapsulation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Immobilized - drug effects</topic><topic>Cells, Immobilized - metabolism</topic><topic>Click chemistry</topic><topic>Click Chemistry - methods</topic><topic>Compressive Strength - drug effects</topic><topic>Covalence</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Crosslinking</topic><topic>Dentistry</topic><topic>Drug delivery systems</topic><topic>Elastic Modulus - drug effects</topic><topic>Female</topic><topic>Glucuronic Acid - chemical synthesis</topic><topic>Glucuronic Acid - chemistry</topic><topic>Glucuronic Acid - pharmacology</topic><topic>Heterocyclic Compounds, 1-Ring - chemistry</topic><topic>Hexuronic Acids - chemical synthesis</topic><topic>Hexuronic Acids - chemistry</topic><topic>Hexuronic Acids - pharmacology</topic><topic>Hydrogel</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>Injections</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>NIH 3T3 Cells</topic><topic>Norbornanes - chemistry</topic><topic>Oligopeptides - pharmacology</topic><topic>Synthesis (chemistry)</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desai, Rajiv M</creatorcontrib><creatorcontrib>Koshy, Sandeep T</creatorcontrib><creatorcontrib>Hilderbrand, Scott A</creatorcontrib><creatorcontrib>Mooney, David J</creatorcontrib><creatorcontrib>Joshi, Neel S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desai, Rajiv M</au><au>Koshy, Sandeep T</au><au>Hilderbrand, Scott A</au><au>Mooney, David J</au><au>Joshi, Neel S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>50</volume><spage>30</spage><epage>37</epage><pages>30-37</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologically harmful due to their lack of chemoselectivity. In this work we introduce tetrazine and norbornene groups to alginate polymer chains and subsequently form covalently crosslinked click alginate hydrogels capable of encapsulating cells without damaging them. The rapid, bioorthogonal, and specific click reaction is irreversible and allows for easy incorporation of cells with high post-encapsulation viability. The swelling and mechanical properties of the click alginate hydrogel can be tuned via the total polymer concentration and the stoichiometric ratio of the complementary click functional groups. The click alginate hydrogel can be modified after gelation to display cell adhesion peptides for 2D cell culture using thiol-ene chemistry. Furthermore, click alginate hydrogels are minimally inflammatory, maintain structural integrity over several months, and reject cell infiltration when injected subcutaneously in mice. Click alginate hydrogels combine the numerous benefits of alginate hydrogels with powerful bioorthogonal click chemistry for use in tissue engineering applications involving the stable encapsulation or delivery of cells or bioactive molecules.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25736493</pmid><doi>10.1016/j.biomaterials.2015.01.048</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2015-05, Vol.50, p.30-37 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770299073 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Advanced Basic Science Alginate Alginates Alginates - chemical synthesis Alginates - chemistry Alginates - pharmacology Animals Biomedical materials Cell adhesion Cell Adhesion - drug effects Cell encapsulation Cell Proliferation - drug effects Cells, Immobilized - drug effects Cells, Immobilized - metabolism Click chemistry Click Chemistry - methods Compressive Strength - drug effects Covalence Cross-Linking Reagents - chemistry Crosslinking Dentistry Drug delivery systems Elastic Modulus - drug effects Female Glucuronic Acid - chemical synthesis Glucuronic Acid - chemistry Glucuronic Acid - pharmacology Heterocyclic Compounds, 1-Ring - chemistry Hexuronic Acids - chemical synthesis Hexuronic Acids - chemistry Hexuronic Acids - pharmacology Hydrogel Hydrogels Hydrogels - pharmacology Injections Mice Mice, Inbred C57BL NIH 3T3 Cells Norbornanes - chemistry Oligopeptides - pharmacology Synthesis (chemistry) Tissue engineering |
title | Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20click%20alginate%20hydrogels%20crosslinked%20via%20tetrazine%E2%80%93norbornene%20chemistry&rft.jtitle=Biomaterials&rft.au=Desai,%20Rajiv%20M&rft.date=2015-05-01&rft.volume=50&rft.spage=30&rft.epage=37&rft.pages=30-37&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.01.048&rft_dat=%3Cproquest_cross%3E1660926483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660926483&rft_id=info:pmid/25736493&rft_els_id=S0142961215000654&rfr_iscdi=true |