Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry

Abstract Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2015-05, Vol.50, p.30-37
Hauptverfasser: Desai, Rajiv M, Koshy, Sandeep T, Hilderbrand, Scott A, Mooney, David J, Joshi, Neel S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue
container_start_page 30
container_title Biomaterials
container_volume 50
creator Desai, Rajiv M
Koshy, Sandeep T
Hilderbrand, Scott A
Mooney, David J
Joshi, Neel S
description Abstract Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologically harmful due to their lack of chemoselectivity. In this work we introduce tetrazine and norbornene groups to alginate polymer chains and subsequently form covalently crosslinked click alginate hydrogels capable of encapsulating cells without damaging them. The rapid, bioorthogonal, and specific click reaction is irreversible and allows for easy incorporation of cells with high post-encapsulation viability. The swelling and mechanical properties of the click alginate hydrogel can be tuned via the total polymer concentration and the stoichiometric ratio of the complementary click functional groups. The click alginate hydrogel can be modified after gelation to display cell adhesion peptides for 2D cell culture using thiol-ene chemistry. Furthermore, click alginate hydrogels are minimally inflammatory, maintain structural integrity over several months, and reject cell infiltration when injected subcutaneously in mice. Click alginate hydrogels combine the numerous benefits of alginate hydrogels with powerful bioorthogonal click chemistry for use in tissue engineering applications involving the stable encapsulation or delivery of cells or bioactive molecules.
doi_str_mv 10.1016/j.biomaterials.2015.01.048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770299073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961215000654</els_id><sourcerecordid>1660926483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-9d49771376d6e799ec448e37ec7633148a515392a258d9f409716b6d2420ea443</originalsourceid><addsrcrecordid>eNqNks1uEzEQxy0EoqHwCmjFicsu4-81ByRUKCBV4lDgajneSevE8RZ7UymceIe-IU-ClxSEuNDTyNL_Y-TfEPKMQkeBqhfrbhnGrZswBxdLx4DKDmgHor9HFrTXfSsNyPtkAVSw1ijKjsijUtZQ3yDYQ3LEpOZKGL4g518wFzeFiI2PwW8aFy9CqtnN5X7I4wXG0vg8lhJD2uDQXAfXTDhl9y0k_PH9Jo15OeaEqfovcRvKlPePyYNVXQyf3M5j8vn07aeT9-3Zx3cfTl6ftV5KPrVmEEZryrUaFGpj0AvRI9foteKcit5JKrlhjsl-MCsBRlO1VAMTDNAJwY_J80PuVR6_7rBMtvZ7jNElHHfFUq2BGQOa30HKtNK9pvr_UqXAMCX6OfXlQfrrhzKu7FUOW5f3loKdUdm1_RuVnVFZoLaiquantz275RaHP9bfbKrgzUFQGeB1wGyLD5g8DiGjn-wwhrv1vPonpoJOwbu4wT2W9bjLafZQW5gFez4fzXwzVAKAkoL_BEPswQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660926483</pqid></control><display><type>article</type><title>Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Desai, Rajiv M ; Koshy, Sandeep T ; Hilderbrand, Scott A ; Mooney, David J ; Joshi, Neel S</creator><creatorcontrib>Desai, Rajiv M ; Koshy, Sandeep T ; Hilderbrand, Scott A ; Mooney, David J ; Joshi, Neel S</creatorcontrib><description>Abstract Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologically harmful due to their lack of chemoselectivity. In this work we introduce tetrazine and norbornene groups to alginate polymer chains and subsequently form covalently crosslinked click alginate hydrogels capable of encapsulating cells without damaging them. The rapid, bioorthogonal, and specific click reaction is irreversible and allows for easy incorporation of cells with high post-encapsulation viability. The swelling and mechanical properties of the click alginate hydrogel can be tuned via the total polymer concentration and the stoichiometric ratio of the complementary click functional groups. The click alginate hydrogel can be modified after gelation to display cell adhesion peptides for 2D cell culture using thiol-ene chemistry. Furthermore, click alginate hydrogels are minimally inflammatory, maintain structural integrity over several months, and reject cell infiltration when injected subcutaneously in mice. Click alginate hydrogels combine the numerous benefits of alginate hydrogels with powerful bioorthogonal click chemistry for use in tissue engineering applications involving the stable encapsulation or delivery of cells or bioactive molecules.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.01.048</identifier><identifier>PMID: 25736493</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Alginate ; Alginates ; Alginates - chemical synthesis ; Alginates - chemistry ; Alginates - pharmacology ; Animals ; Biomedical materials ; Cell adhesion ; Cell Adhesion - drug effects ; Cell encapsulation ; Cell Proliferation - drug effects ; Cells, Immobilized - drug effects ; Cells, Immobilized - metabolism ; Click chemistry ; Click Chemistry - methods ; Compressive Strength - drug effects ; Covalence ; Cross-Linking Reagents - chemistry ; Crosslinking ; Dentistry ; Drug delivery systems ; Elastic Modulus - drug effects ; Female ; Glucuronic Acid - chemical synthesis ; Glucuronic Acid - chemistry ; Glucuronic Acid - pharmacology ; Heterocyclic Compounds, 1-Ring - chemistry ; Hexuronic Acids - chemical synthesis ; Hexuronic Acids - chemistry ; Hexuronic Acids - pharmacology ; Hydrogel ; Hydrogels ; Hydrogels - pharmacology ; Injections ; Mice ; Mice, Inbred C57BL ; NIH 3T3 Cells ; Norbornanes - chemistry ; Oligopeptides - pharmacology ; Synthesis (chemistry) ; Tissue engineering</subject><ispartof>Biomaterials, 2015-05, Vol.50, p.30-37</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-9d49771376d6e799ec448e37ec7633148a515392a258d9f409716b6d2420ea443</citedby><cites>FETCH-LOGICAL-c553t-9d49771376d6e799ec448e37ec7633148a515392a258d9f409716b6d2420ea443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2015.01.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25736493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Desai, Rajiv M</creatorcontrib><creatorcontrib>Koshy, Sandeep T</creatorcontrib><creatorcontrib>Hilderbrand, Scott A</creatorcontrib><creatorcontrib>Mooney, David J</creatorcontrib><creatorcontrib>Joshi, Neel S</creatorcontrib><title>Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologically harmful due to their lack of chemoselectivity. In this work we introduce tetrazine and norbornene groups to alginate polymer chains and subsequently form covalently crosslinked click alginate hydrogels capable of encapsulating cells without damaging them. The rapid, bioorthogonal, and specific click reaction is irreversible and allows for easy incorporation of cells with high post-encapsulation viability. The swelling and mechanical properties of the click alginate hydrogel can be tuned via the total polymer concentration and the stoichiometric ratio of the complementary click functional groups. The click alginate hydrogel can be modified after gelation to display cell adhesion peptides for 2D cell culture using thiol-ene chemistry. Furthermore, click alginate hydrogels are minimally inflammatory, maintain structural integrity over several months, and reject cell infiltration when injected subcutaneously in mice. Click alginate hydrogels combine the numerous benefits of alginate hydrogels with powerful bioorthogonal click chemistry for use in tissue engineering applications involving the stable encapsulation or delivery of cells or bioactive molecules.</description><subject>Advanced Basic Science</subject><subject>Alginate</subject><subject>Alginates</subject><subject>Alginates - chemical synthesis</subject><subject>Alginates - chemistry</subject><subject>Alginates - pharmacology</subject><subject>Animals</subject><subject>Biomedical materials</subject><subject>Cell adhesion</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell encapsulation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Immobilized - drug effects</subject><subject>Cells, Immobilized - metabolism</subject><subject>Click chemistry</subject><subject>Click Chemistry - methods</subject><subject>Compressive Strength - drug effects</subject><subject>Covalence</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Crosslinking</subject><subject>Dentistry</subject><subject>Drug delivery systems</subject><subject>Elastic Modulus - drug effects</subject><subject>Female</subject><subject>Glucuronic Acid - chemical synthesis</subject><subject>Glucuronic Acid - chemistry</subject><subject>Glucuronic Acid - pharmacology</subject><subject>Heterocyclic Compounds, 1-Ring - chemistry</subject><subject>Hexuronic Acids - chemical synthesis</subject><subject>Hexuronic Acids - chemistry</subject><subject>Hexuronic Acids - pharmacology</subject><subject>Hydrogel</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>Injections</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>NIH 3T3 Cells</subject><subject>Norbornanes - chemistry</subject><subject>Oligopeptides - pharmacology</subject><subject>Synthesis (chemistry)</subject><subject>Tissue engineering</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1uEzEQxy0EoqHwCmjFicsu4-81ByRUKCBV4lDgajneSevE8RZ7UymceIe-IU-ClxSEuNDTyNL_Y-TfEPKMQkeBqhfrbhnGrZswBxdLx4DKDmgHor9HFrTXfSsNyPtkAVSw1ijKjsijUtZQ3yDYQ3LEpOZKGL4g518wFzeFiI2PwW8aFy9CqtnN5X7I4wXG0vg8lhJD2uDQXAfXTDhl9y0k_PH9Jo15OeaEqfovcRvKlPePyYNVXQyf3M5j8vn07aeT9-3Zx3cfTl6ftV5KPrVmEEZryrUaFGpj0AvRI9foteKcit5JKrlhjsl-MCsBRlO1VAMTDNAJwY_J80PuVR6_7rBMtvZ7jNElHHfFUq2BGQOa30HKtNK9pvr_UqXAMCX6OfXlQfrrhzKu7FUOW5f3loKdUdm1_RuVnVFZoLaiquantz275RaHP9bfbKrgzUFQGeB1wGyLD5g8DiGjn-wwhrv1vPonpoJOwbu4wT2W9bjLafZQW5gFez4fzXwzVAKAkoL_BEPswQg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Desai, Rajiv M</creator><creator>Koshy, Sandeep T</creator><creator>Hilderbrand, Scott A</creator><creator>Mooney, David J</creator><creator>Joshi, Neel S</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150501</creationdate><title>Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry</title><author>Desai, Rajiv M ; Koshy, Sandeep T ; Hilderbrand, Scott A ; Mooney, David J ; Joshi, Neel S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-9d49771376d6e799ec448e37ec7633148a515392a258d9f409716b6d2420ea443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Advanced Basic Science</topic><topic>Alginate</topic><topic>Alginates</topic><topic>Alginates - chemical synthesis</topic><topic>Alginates - chemistry</topic><topic>Alginates - pharmacology</topic><topic>Animals</topic><topic>Biomedical materials</topic><topic>Cell adhesion</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell encapsulation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Immobilized - drug effects</topic><topic>Cells, Immobilized - metabolism</topic><topic>Click chemistry</topic><topic>Click Chemistry - methods</topic><topic>Compressive Strength - drug effects</topic><topic>Covalence</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Crosslinking</topic><topic>Dentistry</topic><topic>Drug delivery systems</topic><topic>Elastic Modulus - drug effects</topic><topic>Female</topic><topic>Glucuronic Acid - chemical synthesis</topic><topic>Glucuronic Acid - chemistry</topic><topic>Glucuronic Acid - pharmacology</topic><topic>Heterocyclic Compounds, 1-Ring - chemistry</topic><topic>Hexuronic Acids - chemical synthesis</topic><topic>Hexuronic Acids - chemistry</topic><topic>Hexuronic Acids - pharmacology</topic><topic>Hydrogel</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>Injections</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>NIH 3T3 Cells</topic><topic>Norbornanes - chemistry</topic><topic>Oligopeptides - pharmacology</topic><topic>Synthesis (chemistry)</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desai, Rajiv M</creatorcontrib><creatorcontrib>Koshy, Sandeep T</creatorcontrib><creatorcontrib>Hilderbrand, Scott A</creatorcontrib><creatorcontrib>Mooney, David J</creatorcontrib><creatorcontrib>Joshi, Neel S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desai, Rajiv M</au><au>Koshy, Sandeep T</au><au>Hilderbrand, Scott A</au><au>Mooney, David J</au><au>Joshi, Neel S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>50</volume><spage>30</spage><epage>37</epage><pages>30-37</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologically harmful due to their lack of chemoselectivity. In this work we introduce tetrazine and norbornene groups to alginate polymer chains and subsequently form covalently crosslinked click alginate hydrogels capable of encapsulating cells without damaging them. The rapid, bioorthogonal, and specific click reaction is irreversible and allows for easy incorporation of cells with high post-encapsulation viability. The swelling and mechanical properties of the click alginate hydrogel can be tuned via the total polymer concentration and the stoichiometric ratio of the complementary click functional groups. The click alginate hydrogel can be modified after gelation to display cell adhesion peptides for 2D cell culture using thiol-ene chemistry. Furthermore, click alginate hydrogels are minimally inflammatory, maintain structural integrity over several months, and reject cell infiltration when injected subcutaneously in mice. Click alginate hydrogels combine the numerous benefits of alginate hydrogels with powerful bioorthogonal click chemistry for use in tissue engineering applications involving the stable encapsulation or delivery of cells or bioactive molecules.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25736493</pmid><doi>10.1016/j.biomaterials.2015.01.048</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2015-05, Vol.50, p.30-37
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1770299073
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Advanced Basic Science
Alginate
Alginates
Alginates - chemical synthesis
Alginates - chemistry
Alginates - pharmacology
Animals
Biomedical materials
Cell adhesion
Cell Adhesion - drug effects
Cell encapsulation
Cell Proliferation - drug effects
Cells, Immobilized - drug effects
Cells, Immobilized - metabolism
Click chemistry
Click Chemistry - methods
Compressive Strength - drug effects
Covalence
Cross-Linking Reagents - chemistry
Crosslinking
Dentistry
Drug delivery systems
Elastic Modulus - drug effects
Female
Glucuronic Acid - chemical synthesis
Glucuronic Acid - chemistry
Glucuronic Acid - pharmacology
Heterocyclic Compounds, 1-Ring - chemistry
Hexuronic Acids - chemical synthesis
Hexuronic Acids - chemistry
Hexuronic Acids - pharmacology
Hydrogel
Hydrogels
Hydrogels - pharmacology
Injections
Mice
Mice, Inbred C57BL
NIH 3T3 Cells
Norbornanes - chemistry
Oligopeptides - pharmacology
Synthesis (chemistry)
Tissue engineering
title Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20click%20alginate%20hydrogels%20crosslinked%20via%20tetrazine%E2%80%93norbornene%20chemistry&rft.jtitle=Biomaterials&rft.au=Desai,%20Rajiv%20M&rft.date=2015-05-01&rft.volume=50&rft.spage=30&rft.epage=37&rft.pages=30-37&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.01.048&rft_dat=%3Cproquest_cross%3E1660926483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660926483&rft_id=info:pmid/25736493&rft_els_id=S0142961215000654&rfr_iscdi=true