Sliding Mode Control Based on Chemical Reaction Optimization and Radial Basis Functional Link Net for De-Icing Robot Manipulator

In this paper, a sliding mode control (SMC) system based on combining chemical reaction optimization (CRO) algorithm with radial basis functional link net (RBFLN) for an n-link robot manipulator is proposed to achieve the high-precision position tracking. In the proposed scheme, a three-layer RBFLN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamic systems, measurement, and control measurement, and control, 2015-05, Vol.137 (5)
Hauptverfasser: Van Tran, Thuy, Wang, YaoNan, Ao, HungLinh, Khac Truong, Tung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of dynamic systems, measurement, and control
container_volume 137
creator Van Tran, Thuy
Wang, YaoNan
Ao, HungLinh
Khac Truong, Tung
description In this paper, a sliding mode control (SMC) system based on combining chemical reaction optimization (CRO) algorithm with radial basis functional link net (RBFLN) for an n-link robot manipulator is proposed to achieve the high-precision position tracking. In the proposed scheme, a three-layer RBFLN with powerful approximation ability is employed to approximate the uncertainties, such as parameter variations, friction forces, and external disturbances, and to eliminate chattering phenomenon of the SMC. In order to achieve the expected performance in the initial phase as well as the improved convergence rate, the RBFLN parameters need to be optimized in advance. Therefore, the initial parameters of the RBFLN are optimized offline by CRO algorithm instead of random selection. Furthermore, the RBFLN weights are determined online according to adaptive tuning laws in the sense of a projection algorithm and the Lyapunov stability theorem to guarantee the stability and convergence of the system. The simulation results of three-link de-icing robot manipulator (DIRM) are provided to verify the robustness and effectiveness of the proposed methodology.
doi_str_mv 10.1115/1.4028886
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770298330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770298330</sourcerecordid><originalsourceid>FETCH-LOGICAL-a282t-e3e13712c5d6e34b374cbf6bdbcd8dc15bf6a08b16fc8cb12c1176697ba3a2863</originalsourceid><addsrcrecordid>eNotkDtPwzAUhS0EEqUwMLN4hCHFjhPHHSFQqNRSqcBs-RVwSeJgJwNM_HTcx3R1jr57ru4B4BKjCcY4v8WTDKWMMXoERjhPWTKN8hiMEErTBGUkOwVnIWwQwoTkdAT-XmurbfsBl04bWLq2966G9yIYDV0Ly0_TWCVquDZC9TY6q663jf0VOyFaDddCW7FbsQHOhnaHRWNh2y_4YnpYOQ8fTDJX2zNrJ10Pl6K13VCL3vlzcFKJOpiLwxyD99njW_mcLFZP8_JukYiUpX1iiMGkwKnKNTUkk6TIlKyo1FJpphXOoxCISUwrxZSMIMYFpdNCChITKBmD631u5933YELPGxuUqWvRGjcEjosCpVNGCIrozR5V3oXgTcU7bxvhfzhGfNsyx_zQcmSv9qwIjeEbN_j4e-CkQDli5B_VU3ix</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770298330</pqid></control><display><type>article</type><title>Sliding Mode Control Based on Chemical Reaction Optimization and Radial Basis Functional Link Net for De-Icing Robot Manipulator</title><source>ASME Digital Collection Journals</source><source>Alma/SFX Local Collection</source><creator>Van Tran, Thuy ; Wang, YaoNan ; Ao, HungLinh ; Khac Truong, Tung</creator><creatorcontrib>Van Tran, Thuy ; Wang, YaoNan ; Ao, HungLinh ; Khac Truong, Tung</creatorcontrib><description>In this paper, a sliding mode control (SMC) system based on combining chemical reaction optimization (CRO) algorithm with radial basis functional link net (RBFLN) for an n-link robot manipulator is proposed to achieve the high-precision position tracking. In the proposed scheme, a three-layer RBFLN with powerful approximation ability is employed to approximate the uncertainties, such as parameter variations, friction forces, and external disturbances, and to eliminate chattering phenomenon of the SMC. In order to achieve the expected performance in the initial phase as well as the improved convergence rate, the RBFLN parameters need to be optimized in advance. Therefore, the initial parameters of the RBFLN are optimized offline by CRO algorithm instead of random selection. Furthermore, the RBFLN weights are determined online according to adaptive tuning laws in the sense of a projection algorithm and the Lyapunov stability theorem to guarantee the stability and convergence of the system. The simulation results of three-link de-icing robot manipulator (DIRM) are provided to verify the robustness and effectiveness of the proposed methodology.</description><identifier>ISSN: 0022-0434</identifier><identifier>EISSN: 1528-9028</identifier><identifier>DOI: 10.1115/1.4028886</identifier><language>eng</language><publisher>ASME</publisher><subject>Algorithms ; Dynamical systems ; Dynamics ; Links ; Manipulators ; Robot arms ; Robots ; Sliding mode control</subject><ispartof>Journal of dynamic systems, measurement, and control, 2015-05, Vol.137 (5)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a282t-e3e13712c5d6e34b374cbf6bdbcd8dc15bf6a08b16fc8cb12c1176697ba3a2863</citedby><cites>FETCH-LOGICAL-a282t-e3e13712c5d6e34b374cbf6bdbcd8dc15bf6a08b16fc8cb12c1176697ba3a2863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids></links><search><creatorcontrib>Van Tran, Thuy</creatorcontrib><creatorcontrib>Wang, YaoNan</creatorcontrib><creatorcontrib>Ao, HungLinh</creatorcontrib><creatorcontrib>Khac Truong, Tung</creatorcontrib><title>Sliding Mode Control Based on Chemical Reaction Optimization and Radial Basis Functional Link Net for De-Icing Robot Manipulator</title><title>Journal of dynamic systems, measurement, and control</title><addtitle>J. Dyn. Sys., Meas., Control</addtitle><description>In this paper, a sliding mode control (SMC) system based on combining chemical reaction optimization (CRO) algorithm with radial basis functional link net (RBFLN) for an n-link robot manipulator is proposed to achieve the high-precision position tracking. In the proposed scheme, a three-layer RBFLN with powerful approximation ability is employed to approximate the uncertainties, such as parameter variations, friction forces, and external disturbances, and to eliminate chattering phenomenon of the SMC. In order to achieve the expected performance in the initial phase as well as the improved convergence rate, the RBFLN parameters need to be optimized in advance. Therefore, the initial parameters of the RBFLN are optimized offline by CRO algorithm instead of random selection. Furthermore, the RBFLN weights are determined online according to adaptive tuning laws in the sense of a projection algorithm and the Lyapunov stability theorem to guarantee the stability and convergence of the system. The simulation results of three-link de-icing robot manipulator (DIRM) are provided to verify the robustness and effectiveness of the proposed methodology.</description><subject>Algorithms</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Links</subject><subject>Manipulators</subject><subject>Robot arms</subject><subject>Robots</subject><subject>Sliding mode control</subject><issn>0022-0434</issn><issn>1528-9028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAUhS0EEqUwMLN4hCHFjhPHHSFQqNRSqcBs-RVwSeJgJwNM_HTcx3R1jr57ru4B4BKjCcY4v8WTDKWMMXoERjhPWTKN8hiMEErTBGUkOwVnIWwQwoTkdAT-XmurbfsBl04bWLq2966G9yIYDV0Ly0_TWCVquDZC9TY6q663jf0VOyFaDddCW7FbsQHOhnaHRWNh2y_4YnpYOQ8fTDJX2zNrJ10Pl6K13VCL3vlzcFKJOpiLwxyD99njW_mcLFZP8_JukYiUpX1iiMGkwKnKNTUkk6TIlKyo1FJpphXOoxCISUwrxZSMIMYFpdNCChITKBmD631u5933YELPGxuUqWvRGjcEjosCpVNGCIrozR5V3oXgTcU7bxvhfzhGfNsyx_zQcmSv9qwIjeEbN_j4e-CkQDli5B_VU3ix</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Van Tran, Thuy</creator><creator>Wang, YaoNan</creator><creator>Ao, HungLinh</creator><creator>Khac Truong, Tung</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150501</creationdate><title>Sliding Mode Control Based on Chemical Reaction Optimization and Radial Basis Functional Link Net for De-Icing Robot Manipulator</title><author>Van Tran, Thuy ; Wang, YaoNan ; Ao, HungLinh ; Khac Truong, Tung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a282t-e3e13712c5d6e34b374cbf6bdbcd8dc15bf6a08b16fc8cb12c1176697ba3a2863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Links</topic><topic>Manipulators</topic><topic>Robot arms</topic><topic>Robots</topic><topic>Sliding mode control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Tran, Thuy</creatorcontrib><creatorcontrib>Wang, YaoNan</creatorcontrib><creatorcontrib>Ao, HungLinh</creatorcontrib><creatorcontrib>Khac Truong, Tung</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of dynamic systems, measurement, and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Tran, Thuy</au><au>Wang, YaoNan</au><au>Ao, HungLinh</au><au>Khac Truong, Tung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliding Mode Control Based on Chemical Reaction Optimization and Radial Basis Functional Link Net for De-Icing Robot Manipulator</atitle><jtitle>Journal of dynamic systems, measurement, and control</jtitle><stitle>J. Dyn. Sys., Meas., Control</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>137</volume><issue>5</issue><issn>0022-0434</issn><eissn>1528-9028</eissn><abstract>In this paper, a sliding mode control (SMC) system based on combining chemical reaction optimization (CRO) algorithm with radial basis functional link net (RBFLN) for an n-link robot manipulator is proposed to achieve the high-precision position tracking. In the proposed scheme, a three-layer RBFLN with powerful approximation ability is employed to approximate the uncertainties, such as parameter variations, friction forces, and external disturbances, and to eliminate chattering phenomenon of the SMC. In order to achieve the expected performance in the initial phase as well as the improved convergence rate, the RBFLN parameters need to be optimized in advance. Therefore, the initial parameters of the RBFLN are optimized offline by CRO algorithm instead of random selection. Furthermore, the RBFLN weights are determined online according to adaptive tuning laws in the sense of a projection algorithm and the Lyapunov stability theorem to guarantee the stability and convergence of the system. The simulation results of three-link de-icing robot manipulator (DIRM) are provided to verify the robustness and effectiveness of the proposed methodology.</abstract><pub>ASME</pub><doi>10.1115/1.4028886</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-0434
ispartof Journal of dynamic systems, measurement, and control, 2015-05, Vol.137 (5)
issn 0022-0434
1528-9028
language eng
recordid cdi_proquest_miscellaneous_1770298330
source ASME Digital Collection Journals; Alma/SFX Local Collection
subjects Algorithms
Dynamical systems
Dynamics
Links
Manipulators
Robot arms
Robots
Sliding mode control
title Sliding Mode Control Based on Chemical Reaction Optimization and Radial Basis Functional Link Net for De-Icing Robot Manipulator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliding%20Mode%20Control%20Based%20on%20Chemical%20Reaction%20Optimization%20and%20Radial%20Basis%20Functional%20Link%20Net%20for%20De-Icing%20Robot%20Manipulator&rft.jtitle=Journal%20of%20dynamic%20systems,%20measurement,%20and%20control&rft.au=Van%20Tran,%20Thuy&rft.date=2015-05-01&rft.volume=137&rft.issue=5&rft.issn=0022-0434&rft.eissn=1528-9028&rft_id=info:doi/10.1115/1.4028886&rft_dat=%3Cproquest_cross%3E1770298330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770298330&rft_id=info:pmid/&rfr_iscdi=true