Magnetohydrodynamics Thermocapillary Marangoni Convection Heat Transfer of Power-Law Fluids Driven by Temperature Gradient

This paper presents an investigation for magnetohydrodynamics (MHD) thermocapillary Marangoni convection heat transfer of an electrically conducting power-law fluid driven by temperature gradient. The surface tension is assumed to vary linearly with temperature and the effects of power-law viscosity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2013-05, Vol.135 (5)
Hauptverfasser: Lin, Yanhai, Zheng, Liancun, Zhang, Xinxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of heat transfer
container_volume 135
creator Lin, Yanhai
Zheng, Liancun
Zhang, Xinxin
description This paper presents an investigation for magnetohydrodynamics (MHD) thermocapillary Marangoni convection heat transfer of an electrically conducting power-law fluid driven by temperature gradient. The surface tension is assumed to vary linearly with temperature and the effects of power-law viscosity on temperature fields are taken into account by modified Fourier law for power-law fluids (proposed by Pop). The governing partial differential equations are converted into ordinary differential equations and numerical solutions are presented. The effects of the Hartmann number, the power-law index and the Marangoni number on the velocity and temperature fields are discussed and analyzed in detail.
doi_str_mv 10.1115/1.4023394
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770297807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770297807</sourcerecordid><originalsourceid>FETCH-LOGICAL-a312t-7350a74b2a1973fcca941ad9b68744fb492446238bfec8b66ff8dbc4581e75773</originalsourceid><addsrcrecordid>eNo9kD1vFDEURS0EEkugoKZxgwTFBH_N2C7RQhKkjaBYauuN5zlxNGMv9kyi5dcz0a6oXvHOvdI9hLzn7JJz3n7hl4oJKa16QTa8FaYxVsmXZMOYEA1Xhr8mb2p9YIxLqeyG_L2Fu4Rzvj8OJQ_HBFP0le7vsUzZwyGOI5QjvYUC6S6nSLc5PaKfY070BmGm-_VRAxaaA_2Vn7A0O3iiV-MSh0q_lfiIifZHusfpgAXmpSC9LjBETPNb8irAWPHd-V6Q31ff99ubZvfz-sf2664BycXcaNky0KoXwK2WwXuwisNg-85opUKvrFCqE9L0Ab3puy4EM_RetYajbrWWF-TTqfdQ8p8F6-ymWD2uyxLmpTquNRNWG_aMfj6hvuRaCwZ3KHFaDTjO3LNfx93Z78p-PNdC9TCGVYSP9X9AaMU6ae3KfThxUCd0D3kpaV3rpBZGaPkPWwuEfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770297807</pqid></control><display><type>article</type><title>Magnetohydrodynamics Thermocapillary Marangoni Convection Heat Transfer of Power-Law Fluids Driven by Temperature Gradient</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Lin, Yanhai ; Zheng, Liancun ; Zhang, Xinxin</creator><creatorcontrib>Lin, Yanhai ; Zheng, Liancun ; Zhang, Xinxin</creatorcontrib><description>This paper presents an investigation for magnetohydrodynamics (MHD) thermocapillary Marangoni convection heat transfer of an electrically conducting power-law fluid driven by temperature gradient. The surface tension is assumed to vary linearly with temperature and the effects of power-law viscosity on temperature fields are taken into account by modified Fourier law for power-law fluids (proposed by Pop). The governing partial differential equations are converted into ordinary differential equations and numerical solutions are presented. The effects of the Hartmann number, the power-law index and the Marangoni number on the velocity and temperature fields are discussed and analyzed in detail.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.4023394</identifier><identifier>CODEN: JHTRAO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Computational fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fluids ; Forced Convection ; Fundamental areas of phenomenology (including applications) ; Heat transfer ; Hydrodynamic stability ; Magnetohydrodynamics ; Magnetohydrodynamics and electrohydrodynamics ; Marangoni convection ; Non-newtonian fluid flows ; Physics ; Surface-tension-driven instability ; Temperature distribution ; Temperature gradient</subject><ispartof>Journal of heat transfer, 2013-05, Vol.135 (5)</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a312t-7350a74b2a1973fcca941ad9b68744fb492446238bfec8b66ff8dbc4581e75773</citedby><cites>FETCH-LOGICAL-a312t-7350a74b2a1973fcca941ad9b68744fb492446238bfec8b66ff8dbc4581e75773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,38499</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27406399$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Yanhai</creatorcontrib><creatorcontrib>Zheng, Liancun</creatorcontrib><creatorcontrib>Zhang, Xinxin</creatorcontrib><title>Magnetohydrodynamics Thermocapillary Marangoni Convection Heat Transfer of Power-Law Fluids Driven by Temperature Gradient</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><description>This paper presents an investigation for magnetohydrodynamics (MHD) thermocapillary Marangoni convection heat transfer of an electrically conducting power-law fluid driven by temperature gradient. The surface tension is assumed to vary linearly with temperature and the effects of power-law viscosity on temperature fields are taken into account by modified Fourier law for power-law fluids (proposed by Pop). The governing partial differential equations are converted into ordinary differential equations and numerical solutions are presented. The effects of the Hartmann number, the power-law index and the Marangoni number on the velocity and temperature fields are discussed and analyzed in detail.</description><subject>Computational fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Forced Convection</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat transfer</subject><subject>Hydrodynamic stability</subject><subject>Magnetohydrodynamics</subject><subject>Magnetohydrodynamics and electrohydrodynamics</subject><subject>Marangoni convection</subject><subject>Non-newtonian fluid flows</subject><subject>Physics</subject><subject>Surface-tension-driven instability</subject><subject>Temperature distribution</subject><subject>Temperature gradient</subject><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kD1vFDEURS0EEkugoKZxgwTFBH_N2C7RQhKkjaBYauuN5zlxNGMv9kyi5dcz0a6oXvHOvdI9hLzn7JJz3n7hl4oJKa16QTa8FaYxVsmXZMOYEA1Xhr8mb2p9YIxLqeyG_L2Fu4Rzvj8OJQ_HBFP0le7vsUzZwyGOI5QjvYUC6S6nSLc5PaKfY070BmGm-_VRAxaaA_2Vn7A0O3iiV-MSh0q_lfiIifZHusfpgAXmpSC9LjBETPNb8irAWPHd-V6Q31ff99ubZvfz-sf2664BycXcaNky0KoXwK2WwXuwisNg-85opUKvrFCqE9L0Ab3puy4EM_RetYajbrWWF-TTqfdQ8p8F6-ymWD2uyxLmpTquNRNWG_aMfj6hvuRaCwZ3KHFaDTjO3LNfx93Z78p-PNdC9TCGVYSP9X9AaMU6ae3KfThxUCd0D3kpaV3rpBZGaPkPWwuEfQ</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Lin, Yanhai</creator><creator>Zheng, Liancun</creator><creator>Zhang, Xinxin</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>Magnetohydrodynamics Thermocapillary Marangoni Convection Heat Transfer of Power-Law Fluids Driven by Temperature Gradient</title><author>Lin, Yanhai ; Zheng, Liancun ; Zhang, Xinxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a312t-7350a74b2a1973fcca941ad9b68744fb492446238bfec8b66ff8dbc4581e75773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computational fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Forced Convection</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat transfer</topic><topic>Hydrodynamic stability</topic><topic>Magnetohydrodynamics</topic><topic>Magnetohydrodynamics and electrohydrodynamics</topic><topic>Marangoni convection</topic><topic>Non-newtonian fluid flows</topic><topic>Physics</topic><topic>Surface-tension-driven instability</topic><topic>Temperature distribution</topic><topic>Temperature gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yanhai</creatorcontrib><creatorcontrib>Zheng, Liancun</creatorcontrib><creatorcontrib>Zhang, Xinxin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yanhai</au><au>Zheng, Liancun</au><au>Zhang, Xinxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetohydrodynamics Thermocapillary Marangoni Convection Heat Transfer of Power-Law Fluids Driven by Temperature Gradient</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>135</volume><issue>5</issue><issn>0022-1481</issn><eissn>1528-8943</eissn><coden>JHTRAO</coden><abstract>This paper presents an investigation for magnetohydrodynamics (MHD) thermocapillary Marangoni convection heat transfer of an electrically conducting power-law fluid driven by temperature gradient. The surface tension is assumed to vary linearly with temperature and the effects of power-law viscosity on temperature fields are taken into account by modified Fourier law for power-law fluids (proposed by Pop). The governing partial differential equations are converted into ordinary differential equations and numerical solutions are presented. The effects of the Hartmann number, the power-law index and the Marangoni number on the velocity and temperature fields are discussed and analyzed in detail.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.4023394</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-1481
ispartof Journal of heat transfer, 2013-05, Vol.135 (5)
issn 0022-1481
1528-8943
language eng
recordid cdi_proquest_miscellaneous_1770297807
source ASME Transactions Journals (Current); Alma/SFX Local Collection
subjects Computational fluid dynamics
Exact sciences and technology
Fluid dynamics
Fluid flow
Fluids
Forced Convection
Fundamental areas of phenomenology (including applications)
Heat transfer
Hydrodynamic stability
Magnetohydrodynamics
Magnetohydrodynamics and electrohydrodynamics
Marangoni convection
Non-newtonian fluid flows
Physics
Surface-tension-driven instability
Temperature distribution
Temperature gradient
title Magnetohydrodynamics Thermocapillary Marangoni Convection Heat Transfer of Power-Law Fluids Driven by Temperature Gradient
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetohydrodynamics%20Thermocapillary%20Marangoni%20Convection%20Heat%20Transfer%20of%20Power-Law%20Fluids%20Driven%20by%20Temperature%20Gradient&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Lin,%20Yanhai&rft.date=2013-05-01&rft.volume=135&rft.issue=5&rft.issn=0022-1481&rft.eissn=1528-8943&rft.coden=JHTRAO&rft_id=info:doi/10.1115/1.4023394&rft_dat=%3Cproquest_cross%3E1770297807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770297807&rft_id=info:pmid/&rfr_iscdi=true