Heisenberg-limited atom clocks based on entangled qubits

We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2014-05, Vol.112 (19), p.190403-190403
Hauptverfasser: Kessler, E M, Kómár, P, Bishof, M, Jiang, L, Sørensen, A S, Ye, J, Lukin, M D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190403
container_issue 19
container_start_page 190403
container_title Physical review letters
container_volume 112
creator Kessler, E M
Kómár, P
Bishof, M
Jiang, L
Sørensen, A S
Ye, J
Lukin, M D
description We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions where the drift of the phase of the laser interrogating the atoms is the main source of decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new protocol with existing state of the art interrogation schemes, and identify the precise conditions under which entanglement provides an advantage for clock stabilization: it allows a significant gain in the stability for short averaging time.
doi_str_mv 10.1103/PhysRevLett.112.190403
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770291809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770291809</sourcerecordid><originalsourceid>FETCH-LOGICAL-p244t-a57897c587f2bf9608def212df50eb1c1eb2c4514dd24105dbd92086cb51806c3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMotlb_QunSzdT3MskkWUpRKxQU0fUwSd7U0floJxmh_94R69rV5R4Od3EZmyMsESG9eX4_hBf62lCMI-BLNCAgPWFTBGUShShO2RQgxcQAqAm7COEDAJBn-pxNuNBKGTRTptdUBWot9dukrpoqkl8UsWsWru7cZ1jYIoykaxfUxqLd1mPZD7aK4ZKdlUUd6OqYM_Z2f_e6Wiebp4fH1e0m2XEhYlJIpY1yUquS29JkoD2VHLkvJZBFh2S5ExKF91wgSG-94aAzZyVqyFw6Y9e_u7u-2w8UYt5UwVFdFy11Q8hRKeBmdM3_qkzRSCX0jzo_qoNtyOe7vmqK_pD_HZN-Ay9ZZtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531957489</pqid></control><display><type>article</type><title>Heisenberg-limited atom clocks based on entangled qubits</title><source>American Physical Society Journals</source><creator>Kessler, E M ; Kómár, P ; Bishof, M ; Jiang, L ; Sørensen, A S ; Ye, J ; Lukin, M D</creator><creatorcontrib>Kessler, E M ; Kómár, P ; Bishof, M ; Jiang, L ; Sørensen, A S ; Ye, J ; Lukin, M D</creatorcontrib><description>We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions where the drift of the phase of the laser interrogating the atoms is the main source of decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new protocol with existing state of the art interrogation schemes, and identify the precise conditions under which entanglement provides an advantage for clock stabilization: it allows a significant gain in the stability for short averaging time.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.112.190403</identifier><identifier>PMID: 24877919</identifier><language>eng</language><publisher>United States</publisher><subject>Clocks ; Coherence ; Gain ; Interrogation ; Lasers ; Qubits (quantum computing) ; Stability ; Stabilization</subject><ispartof>Physical review letters, 2014-05, Vol.112 (19), p.190403-190403</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24877919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kessler, E M</creatorcontrib><creatorcontrib>Kómár, P</creatorcontrib><creatorcontrib>Bishof, M</creatorcontrib><creatorcontrib>Jiang, L</creatorcontrib><creatorcontrib>Sørensen, A S</creatorcontrib><creatorcontrib>Ye, J</creatorcontrib><creatorcontrib>Lukin, M D</creatorcontrib><title>Heisenberg-limited atom clocks based on entangled qubits</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions where the drift of the phase of the laser interrogating the atoms is the main source of decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new protocol with existing state of the art interrogation schemes, and identify the precise conditions under which entanglement provides an advantage for clock stabilization: it allows a significant gain in the stability for short averaging time.</description><subject>Clocks</subject><subject>Coherence</subject><subject>Gain</subject><subject>Interrogation</subject><subject>Lasers</subject><subject>Qubits (quantum computing)</subject><subject>Stability</subject><subject>Stabilization</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMotlb_QunSzdT3MskkWUpRKxQU0fUwSd7U0floJxmh_94R69rV5R4Od3EZmyMsESG9eX4_hBf62lCMI-BLNCAgPWFTBGUShShO2RQgxcQAqAm7COEDAJBn-pxNuNBKGTRTptdUBWot9dukrpoqkl8UsWsWru7cZ1jYIoykaxfUxqLd1mPZD7aK4ZKdlUUd6OqYM_Z2f_e6Wiebp4fH1e0m2XEhYlJIpY1yUquS29JkoD2VHLkvJZBFh2S5ExKF91wgSG-94aAzZyVqyFw6Y9e_u7u-2w8UYt5UwVFdFy11Q8hRKeBmdM3_qkzRSCX0jzo_qoNtyOe7vmqK_pD_HZN-Ay9ZZtQ</recordid><startdate>20140516</startdate><enddate>20140516</enddate><creator>Kessler, E M</creator><creator>Kómár, P</creator><creator>Bishof, M</creator><creator>Jiang, L</creator><creator>Sørensen, A S</creator><creator>Ye, J</creator><creator>Lukin, M D</creator><scope>NPM</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140516</creationdate><title>Heisenberg-limited atom clocks based on entangled qubits</title><author>Kessler, E M ; Kómár, P ; Bishof, M ; Jiang, L ; Sørensen, A S ; Ye, J ; Lukin, M D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p244t-a57897c587f2bf9608def212df50eb1c1eb2c4514dd24105dbd92086cb51806c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Clocks</topic><topic>Coherence</topic><topic>Gain</topic><topic>Interrogation</topic><topic>Lasers</topic><topic>Qubits (quantum computing)</topic><topic>Stability</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kessler, E M</creatorcontrib><creatorcontrib>Kómár, P</creatorcontrib><creatorcontrib>Bishof, M</creatorcontrib><creatorcontrib>Jiang, L</creatorcontrib><creatorcontrib>Sørensen, A S</creatorcontrib><creatorcontrib>Ye, J</creatorcontrib><creatorcontrib>Lukin, M D</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessler, E M</au><au>Kómár, P</au><au>Bishof, M</au><au>Jiang, L</au><au>Sørensen, A S</au><au>Ye, J</au><au>Lukin, M D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heisenberg-limited atom clocks based on entangled qubits</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2014-05-16</date><risdate>2014</risdate><volume>112</volume><issue>19</issue><spage>190403</spage><epage>190403</epage><pages>190403-190403</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions where the drift of the phase of the laser interrogating the atoms is the main source of decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new protocol with existing state of the art interrogation schemes, and identify the precise conditions under which entanglement provides an advantage for clock stabilization: it allows a significant gain in the stability for short averaging time.</abstract><cop>United States</cop><pmid>24877919</pmid><doi>10.1103/PhysRevLett.112.190403</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2014-05, Vol.112 (19), p.190403-190403
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1770291809
source American Physical Society Journals
subjects Clocks
Coherence
Gain
Interrogation
Lasers
Qubits (quantum computing)
Stability
Stabilization
title Heisenberg-limited atom clocks based on entangled qubits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heisenberg-limited%20atom%20clocks%20based%20on%20entangled%20qubits&rft.jtitle=Physical%20review%20letters&rft.au=Kessler,%20E%20M&rft.date=2014-05-16&rft.volume=112&rft.issue=19&rft.spage=190403&rft.epage=190403&rft.pages=190403-190403&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.112.190403&rft_dat=%3Cproquest_pubme%3E1770291809%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531957489&rft_id=info:pmid/24877919&rfr_iscdi=true