Heisenberg-limited atom clocks based on entangled qubits
We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2014-05, Vol.112 (19), p.190403-190403 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 190403 |
---|---|
container_issue | 19 |
container_start_page | 190403 |
container_title | Physical review letters |
container_volume | 112 |
creator | Kessler, E M Kómár, P Bishof, M Jiang, L Sørensen, A S Ye, J Lukin, M D |
description | We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions where the drift of the phase of the laser interrogating the atoms is the main source of decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new protocol with existing state of the art interrogation schemes, and identify the precise conditions under which entanglement provides an advantage for clock stabilization: it allows a significant gain in the stability for short averaging time. |
doi_str_mv | 10.1103/PhysRevLett.112.190403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770291809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770291809</sourcerecordid><originalsourceid>FETCH-LOGICAL-p244t-a57897c587f2bf9608def212df50eb1c1eb2c4514dd24105dbd92086cb51806c3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMotlb_QunSzdT3MskkWUpRKxQU0fUwSd7U0floJxmh_94R69rV5R4Od3EZmyMsESG9eX4_hBf62lCMI-BLNCAgPWFTBGUShShO2RQgxcQAqAm7COEDAJBn-pxNuNBKGTRTptdUBWot9dukrpoqkl8UsWsWru7cZ1jYIoykaxfUxqLd1mPZD7aK4ZKdlUUd6OqYM_Z2f_e6Wiebp4fH1e0m2XEhYlJIpY1yUquS29JkoD2VHLkvJZBFh2S5ExKF91wgSG-94aAzZyVqyFw6Y9e_u7u-2w8UYt5UwVFdFy11Q8hRKeBmdM3_qkzRSCX0jzo_qoNtyOe7vmqK_pD_HZN-Ay9ZZtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531957489</pqid></control><display><type>article</type><title>Heisenberg-limited atom clocks based on entangled qubits</title><source>American Physical Society Journals</source><creator>Kessler, E M ; Kómár, P ; Bishof, M ; Jiang, L ; Sørensen, A S ; Ye, J ; Lukin, M D</creator><creatorcontrib>Kessler, E M ; Kómár, P ; Bishof, M ; Jiang, L ; Sørensen, A S ; Ye, J ; Lukin, M D</creatorcontrib><description>We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions where the drift of the phase of the laser interrogating the atoms is the main source of decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new protocol with existing state of the art interrogation schemes, and identify the precise conditions under which entanglement provides an advantage for clock stabilization: it allows a significant gain in the stability for short averaging time.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.112.190403</identifier><identifier>PMID: 24877919</identifier><language>eng</language><publisher>United States</publisher><subject>Clocks ; Coherence ; Gain ; Interrogation ; Lasers ; Qubits (quantum computing) ; Stability ; Stabilization</subject><ispartof>Physical review letters, 2014-05, Vol.112 (19), p.190403-190403</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24877919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kessler, E M</creatorcontrib><creatorcontrib>Kómár, P</creatorcontrib><creatorcontrib>Bishof, M</creatorcontrib><creatorcontrib>Jiang, L</creatorcontrib><creatorcontrib>Sørensen, A S</creatorcontrib><creatorcontrib>Ye, J</creatorcontrib><creatorcontrib>Lukin, M D</creatorcontrib><title>Heisenberg-limited atom clocks based on entangled qubits</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions where the drift of the phase of the laser interrogating the atoms is the main source of decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new protocol with existing state of the art interrogation schemes, and identify the precise conditions under which entanglement provides an advantage for clock stabilization: it allows a significant gain in the stability for short averaging time.</description><subject>Clocks</subject><subject>Coherence</subject><subject>Gain</subject><subject>Interrogation</subject><subject>Lasers</subject><subject>Qubits (quantum computing)</subject><subject>Stability</subject><subject>Stabilization</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMotlb_QunSzdT3MskkWUpRKxQU0fUwSd7U0floJxmh_94R69rV5R4Od3EZmyMsESG9eX4_hBf62lCMI-BLNCAgPWFTBGUShShO2RQgxcQAqAm7COEDAJBn-pxNuNBKGTRTptdUBWot9dukrpoqkl8UsWsWru7cZ1jYIoykaxfUxqLd1mPZD7aK4ZKdlUUd6OqYM_Z2f_e6Wiebp4fH1e0m2XEhYlJIpY1yUquS29JkoD2VHLkvJZBFh2S5ExKF91wgSG-94aAzZyVqyFw6Y9e_u7u-2w8UYt5UwVFdFy11Q8hRKeBmdM3_qkzRSCX0jzo_qoNtyOe7vmqK_pD_HZN-Ay9ZZtQ</recordid><startdate>20140516</startdate><enddate>20140516</enddate><creator>Kessler, E M</creator><creator>Kómár, P</creator><creator>Bishof, M</creator><creator>Jiang, L</creator><creator>Sørensen, A S</creator><creator>Ye, J</creator><creator>Lukin, M D</creator><scope>NPM</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140516</creationdate><title>Heisenberg-limited atom clocks based on entangled qubits</title><author>Kessler, E M ; Kómár, P ; Bishof, M ; Jiang, L ; Sørensen, A S ; Ye, J ; Lukin, M D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p244t-a57897c587f2bf9608def212df50eb1c1eb2c4514dd24105dbd92086cb51806c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Clocks</topic><topic>Coherence</topic><topic>Gain</topic><topic>Interrogation</topic><topic>Lasers</topic><topic>Qubits (quantum computing)</topic><topic>Stability</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kessler, E M</creatorcontrib><creatorcontrib>Kómár, P</creatorcontrib><creatorcontrib>Bishof, M</creatorcontrib><creatorcontrib>Jiang, L</creatorcontrib><creatorcontrib>Sørensen, A S</creatorcontrib><creatorcontrib>Ye, J</creatorcontrib><creatorcontrib>Lukin, M D</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessler, E M</au><au>Kómár, P</au><au>Bishof, M</au><au>Jiang, L</au><au>Sørensen, A S</au><au>Ye, J</au><au>Lukin, M D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heisenberg-limited atom clocks based on entangled qubits</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2014-05-16</date><risdate>2014</risdate><volume>112</volume><issue>19</issue><spage>190403</spage><epage>190403</epage><pages>190403-190403</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions where the drift of the phase of the laser interrogating the atoms is the main source of decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new protocol with existing state of the art interrogation schemes, and identify the precise conditions under which entanglement provides an advantage for clock stabilization: it allows a significant gain in the stability for short averaging time.</abstract><cop>United States</cop><pmid>24877919</pmid><doi>10.1103/PhysRevLett.112.190403</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2014-05, Vol.112 (19), p.190403-190403 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770291809 |
source | American Physical Society Journals |
subjects | Clocks Coherence Gain Interrogation Lasers Qubits (quantum computing) Stability Stabilization |
title | Heisenberg-limited atom clocks based on entangled qubits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heisenberg-limited%20atom%20clocks%20based%20on%20entangled%20qubits&rft.jtitle=Physical%20review%20letters&rft.au=Kessler,%20E%20M&rft.date=2014-05-16&rft.volume=112&rft.issue=19&rft.spage=190403&rft.epage=190403&rft.pages=190403-190403&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.112.190403&rft_dat=%3Cproquest_pubme%3E1770291809%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531957489&rft_id=info:pmid/24877919&rfr_iscdi=true |