On perturbations of principal eigenvectors of substochastic matrices

In this report we consider substochastic matrices with some zero rows and study the sensitivity of their eigenvectors to the modifications of zero entries. The analysis is prompted by and directly applied to the Google method of ranking the web sites, which substitutes the pages without outlinks (da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2016-03, Vol.295, p.149-158
Hauptverfasser: Bourchtein, Ludmila, Bourchtein, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue
container_start_page 149
container_title Journal of computational and applied mathematics
container_volume 295
creator Bourchtein, Ludmila
Bourchtein, Andrei
description In this report we consider substochastic matrices with some zero rows and study the sensitivity of their eigenvectors to the modifications of zero entries. The analysis is prompted by and directly applied to the Google method of ranking the web sites, which substitutes the pages without outlinks (dangling nodes) in the original web link matrix by non-zero rows (dangling vectors). We present an analysis of the influence of artificial links attributed to the dangling nodes on the principal eigenvectors of the web matrix. We clarify when the choice of the dangling vector does not change the original eigenvectors and give an evaluation for perturbations of the principal eigenvectors when they are subject to modification.
doi_str_mv 10.1016/j.cam.2015.01.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770291147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042715000254</els_id><sourcerecordid>1770291147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-e93c9fcb7d06610cc446cf557f125b7f22e960472a357b506259b21d3020da53</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AG89eml9L22aDZ5k_QsLe9l7SNNUs7RNTdIFv71Z17MwMIc382B-hNwiFAhY3-8LrYaCArICMKk8IwtccZEj56tzsoCS8xwqyi_JVQh7AKgFVgvytB2zyfg4-0ZF68aQuS6bvB21nVSfGfthxoPR0fnfS5ibEJ3-VCFanQ0qeqtNuCYXneqDufnzJdm9PO_Wb_lm-_q-ftzkuhQs5kaUWnS64S3UNYLWVVXrjjHeIWUN7yg1ooaKU1Uy3jCoKRMNxbYECq1i5ZLcnd5O3n3NJkQ52KBN36vRuDnINBWoQKx4iuIpqr0LwZtOpk2D8t8SQR6Byb1MwOQRmARMKlPn4dQxacLBGi-DtmbUprU-EZCts_-0fwBmAHMy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770291147</pqid></control><display><type>article</type><title>On perturbations of principal eigenvectors of substochastic matrices</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bourchtein, Ludmila ; Bourchtein, Andrei</creator><creatorcontrib>Bourchtein, Ludmila ; Bourchtein, Andrei</creatorcontrib><description>In this report we consider substochastic matrices with some zero rows and study the sensitivity of their eigenvectors to the modifications of zero entries. The analysis is prompted by and directly applied to the Google method of ranking the web sites, which substitutes the pages without outlinks (dangling nodes) in the original web link matrix by non-zero rows (dangling vectors). We present an analysis of the influence of artificial links attributed to the dangling nodes on the principal eigenvectors of the web matrix. We clarify when the choice of the dangling vector does not change the original eigenvectors and give an evaluation for perturbations of the principal eigenvectors when they are subject to modification.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2015.01.013</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Dangling nodes ; Eigenvectors ; Links ; Markov chains ; Mathematical analysis ; Mathematical models ; Matrices (mathematics) ; Matrix methods ; PageRank vector ; Perturbation methods ; Principal eigenvectors ; Substochastic matrices ; Vectors (mathematics)</subject><ispartof>Journal of computational and applied mathematics, 2016-03, Vol.295, p.149-158</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c395t-e93c9fcb7d06610cc446cf557f125b7f22e960472a357b506259b21d3020da53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2015.01.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Bourchtein, Ludmila</creatorcontrib><creatorcontrib>Bourchtein, Andrei</creatorcontrib><title>On perturbations of principal eigenvectors of substochastic matrices</title><title>Journal of computational and applied mathematics</title><description>In this report we consider substochastic matrices with some zero rows and study the sensitivity of their eigenvectors to the modifications of zero entries. The analysis is prompted by and directly applied to the Google method of ranking the web sites, which substitutes the pages without outlinks (dangling nodes) in the original web link matrix by non-zero rows (dangling vectors). We present an analysis of the influence of artificial links attributed to the dangling nodes on the principal eigenvectors of the web matrix. We clarify when the choice of the dangling vector does not change the original eigenvectors and give an evaluation for perturbations of the principal eigenvectors when they are subject to modification.</description><subject>Dangling nodes</subject><subject>Eigenvectors</subject><subject>Links</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrices (mathematics)</subject><subject>Matrix methods</subject><subject>PageRank vector</subject><subject>Perturbation methods</subject><subject>Principal eigenvectors</subject><subject>Substochastic matrices</subject><subject>Vectors (mathematics)</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AG89eml9L22aDZ5k_QsLe9l7SNNUs7RNTdIFv71Z17MwMIc382B-hNwiFAhY3-8LrYaCArICMKk8IwtccZEj56tzsoCS8xwqyi_JVQh7AKgFVgvytB2zyfg4-0ZF68aQuS6bvB21nVSfGfthxoPR0fnfS5ibEJ3-VCFanQ0qeqtNuCYXneqDufnzJdm9PO_Wb_lm-_q-ftzkuhQs5kaUWnS64S3UNYLWVVXrjjHeIWUN7yg1ooaKU1Uy3jCoKRMNxbYECq1i5ZLcnd5O3n3NJkQ52KBN36vRuDnINBWoQKx4iuIpqr0LwZtOpk2D8t8SQR6Byb1MwOQRmARMKlPn4dQxacLBGi-DtmbUprU-EZCts_-0fwBmAHMy</recordid><startdate>20160315</startdate><enddate>20160315</enddate><creator>Bourchtein, Ludmila</creator><creator>Bourchtein, Andrei</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160315</creationdate><title>On perturbations of principal eigenvectors of substochastic matrices</title><author>Bourchtein, Ludmila ; Bourchtein, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-e93c9fcb7d06610cc446cf557f125b7f22e960472a357b506259b21d3020da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Dangling nodes</topic><topic>Eigenvectors</topic><topic>Links</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrices (mathematics)</topic><topic>Matrix methods</topic><topic>PageRank vector</topic><topic>Perturbation methods</topic><topic>Principal eigenvectors</topic><topic>Substochastic matrices</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourchtein, Ludmila</creatorcontrib><creatorcontrib>Bourchtein, Andrei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourchtein, Ludmila</au><au>Bourchtein, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On perturbations of principal eigenvectors of substochastic matrices</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2016-03-15</date><risdate>2016</risdate><volume>295</volume><spage>149</spage><epage>158</epage><pages>149-158</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In this report we consider substochastic matrices with some zero rows and study the sensitivity of their eigenvectors to the modifications of zero entries. The analysis is prompted by and directly applied to the Google method of ranking the web sites, which substitutes the pages without outlinks (dangling nodes) in the original web link matrix by non-zero rows (dangling vectors). We present an analysis of the influence of artificial links attributed to the dangling nodes on the principal eigenvectors of the web matrix. We clarify when the choice of the dangling vector does not change the original eigenvectors and give an evaluation for perturbations of the principal eigenvectors when they are subject to modification.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2015.01.013</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2016-03, Vol.295, p.149-158
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1770291147
source Elsevier ScienceDirect Journals Complete - AutoHoldings; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Dangling nodes
Eigenvectors
Links
Markov chains
Mathematical analysis
Mathematical models
Matrices (mathematics)
Matrix methods
PageRank vector
Perturbation methods
Principal eigenvectors
Substochastic matrices
Vectors (mathematics)
title On perturbations of principal eigenvectors of substochastic matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20perturbations%20of%20principal%20eigenvectors%20of%20substochastic%20matrices&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Bourchtein,%20Ludmila&rft.date=2016-03-15&rft.volume=295&rft.spage=149&rft.epage=158&rft.pages=149-158&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2015.01.013&rft_dat=%3Cproquest_cross%3E1770291147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770291147&rft_id=info:pmid/&rft_els_id=S0377042715000254&rfr_iscdi=true