On the gradient elastic wave propagation in cylindrical waveguides with microstructure

The present work describes the development of a complete theoretical framework of wave propagation in cylindrical waveguides possessing microstructure. In parallel, a thorough investigation of the full 3-D model of wave propagation in cylinders is presented. The first step is the spectral decomposit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part B, Engineering Engineering, 2012-09, Vol.43 (6), p.2613-2627
Hauptverfasser: Charalambopoulos, Antonios, Gergidis, Leonidas N., Kartalos, Giorgos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2627
container_issue 6
container_start_page 2613
container_title Composites. Part B, Engineering
container_volume 43
creator Charalambopoulos, Antonios
Gergidis, Leonidas N.
Kartalos, Giorgos
description The present work describes the development of a complete theoretical framework of wave propagation in cylindrical waveguides possessing microstructure. In parallel, a thorough investigation of the full 3-D model of wave propagation in cylinders is presented. The first step is the spectral decomposition of the boundary value problem emerging via wave propagation analysis. The spectral representation of the specific gradient elasticity problem reflects the ability to construct all the possible propagating modes in cylindrical geometry. Several byproducts arise along the present work, which constitute generalizations of well known important features of classical elasticity and are indispensable for modeling the gradient elasticity problem. We note the construction of the set of dyadic Navier eigenfunctions which constitute the generalization of the Navier eigenvectors. The restriction of the Navier eigendyadics on cylindrical surfaces gives birth to the dyadic cylindrical harmonics, which constitute the generalization of the well known vector harmonics. This set is also a basis in the sense that the trace of every dyadic field on a cylindrical surface can be represented as a countable superposition of dyadic cylindrical harmonics. The method aims at providing the necessary theoretical establishment for the determination of the dispersion curves emerging in cortical bones.
doi_str_mv 10.1016/j.compositesb.2011.12.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770291094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359836812000054</els_id><sourcerecordid>1038321477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-4583628782b975de0a63c8666b36dcfc2d249fc2f7896314ab927766933cf1d83</originalsourceid><addsrcrecordid>eNqNkMlOwzAQQCMEEqXwDZgblwQviZcjqtikShxYrpZrT1pXaVJsB8Tf41IO3OA0I82b7RXFBcEVwYRfrSs7bLZD9AnioqKYkIrQCpP6oJgQKVRJMFeHOWeNKiXj8rg4iXGNMa4bRifF62OP0grQMhjnoU8IOhOTt-jDvAPahmFrlib5oUe-R_az870L3pruu74cvYOIPnxaoY23YYgpjDaNAU6Lo9Z0Ec5-4rR4ub15nt2X88e7h9n1vLQ1p6msm3wSlULShRKNA2w4s5JzvmDc2dZSR2uVQyuk4ozUZqGoEJwrxmxLnGTT4nI_N1_6NkJMeuOjha4zPQxj1EQITBXBqv4bxUwySmohMqr26O6lGKDV2-A3JnxmSO-067X-pV3vtGtCddaee8_3va0ZtFkGH_XLUwYanKEGy9302Z6ALObdQ9DRZvUWnA9gk3aD_8eeLzCbm1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038321477</pqid></control><display><type>article</type><title>On the gradient elastic wave propagation in cylindrical waveguides with microstructure</title><source>Elsevier ScienceDirect Journals</source><creator>Charalambopoulos, Antonios ; Gergidis, Leonidas N. ; Kartalos, Giorgos</creator><creatorcontrib>Charalambopoulos, Antonios ; Gergidis, Leonidas N. ; Kartalos, Giorgos</creatorcontrib><description>The present work describes the development of a complete theoretical framework of wave propagation in cylindrical waveguides possessing microstructure. In parallel, a thorough investigation of the full 3-D model of wave propagation in cylinders is presented. The first step is the spectral decomposition of the boundary value problem emerging via wave propagation analysis. The spectral representation of the specific gradient elasticity problem reflects the ability to construct all the possible propagating modes in cylindrical geometry. Several byproducts arise along the present work, which constitute generalizations of well known important features of classical elasticity and are indispensable for modeling the gradient elasticity problem. We note the construction of the set of dyadic Navier eigenfunctions which constitute the generalization of the Navier eigenvectors. The restriction of the Navier eigendyadics on cylindrical surfaces gives birth to the dyadic cylindrical harmonics, which constitute the generalization of the well known vector harmonics. This set is also a basis in the sense that the trace of every dyadic field on a cylindrical surface can be represented as a countable superposition of dyadic cylindrical harmonics. The method aims at providing the necessary theoretical establishment for the determination of the dispersion curves emerging in cortical bones.</description><identifier>ISSN: 1359-8368</identifier><identifier>EISSN: 1879-1069</identifier><identifier>DOI: 10.1016/j.compositesb.2011.12.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Smart materials ; B. Elasticity ; bones ; byproducts ; C. Analytical modeling ; Dyadics ; Elasticity ; Fluid flow ; Harmonics ; Mathematical analysis ; Mathematical models ; microstructure ; Spectra ; Wave propagation</subject><ispartof>Composites. Part B, Engineering, 2012-09, Vol.43 (6), p.2613-2627</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-4583628782b975de0a63c8666b36dcfc2d249fc2f7896314ab927766933cf1d83</citedby><cites>FETCH-LOGICAL-c462t-4583628782b975de0a63c8666b36dcfc2d249fc2f7896314ab927766933cf1d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359836812000054$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Charalambopoulos, Antonios</creatorcontrib><creatorcontrib>Gergidis, Leonidas N.</creatorcontrib><creatorcontrib>Kartalos, Giorgos</creatorcontrib><title>On the gradient elastic wave propagation in cylindrical waveguides with microstructure</title><title>Composites. Part B, Engineering</title><description>The present work describes the development of a complete theoretical framework of wave propagation in cylindrical waveguides possessing microstructure. In parallel, a thorough investigation of the full 3-D model of wave propagation in cylinders is presented. The first step is the spectral decomposition of the boundary value problem emerging via wave propagation analysis. The spectral representation of the specific gradient elasticity problem reflects the ability to construct all the possible propagating modes in cylindrical geometry. Several byproducts arise along the present work, which constitute generalizations of well known important features of classical elasticity and are indispensable for modeling the gradient elasticity problem. We note the construction of the set of dyadic Navier eigenfunctions which constitute the generalization of the Navier eigenvectors. The restriction of the Navier eigendyadics on cylindrical surfaces gives birth to the dyadic cylindrical harmonics, which constitute the generalization of the well known vector harmonics. This set is also a basis in the sense that the trace of every dyadic field on a cylindrical surface can be represented as a countable superposition of dyadic cylindrical harmonics. The method aims at providing the necessary theoretical establishment for the determination of the dispersion curves emerging in cortical bones.</description><subject>A. Smart materials</subject><subject>B. Elasticity</subject><subject>bones</subject><subject>byproducts</subject><subject>C. Analytical modeling</subject><subject>Dyadics</subject><subject>Elasticity</subject><subject>Fluid flow</subject><subject>Harmonics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>microstructure</subject><subject>Spectra</subject><subject>Wave propagation</subject><issn>1359-8368</issn><issn>1879-1069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkMlOwzAQQCMEEqXwDZgblwQviZcjqtikShxYrpZrT1pXaVJsB8Tf41IO3OA0I82b7RXFBcEVwYRfrSs7bLZD9AnioqKYkIrQCpP6oJgQKVRJMFeHOWeNKiXj8rg4iXGNMa4bRifF62OP0grQMhjnoU8IOhOTt-jDvAPahmFrlib5oUe-R_az870L3pruu74cvYOIPnxaoY23YYgpjDaNAU6Lo9Z0Ec5-4rR4ub15nt2X88e7h9n1vLQ1p6msm3wSlULShRKNA2w4s5JzvmDc2dZSR2uVQyuk4ozUZqGoEJwrxmxLnGTT4nI_N1_6NkJMeuOjha4zPQxj1EQITBXBqv4bxUwySmohMqr26O6lGKDV2-A3JnxmSO-067X-pV3vtGtCddaee8_3va0ZtFkGH_XLUwYanKEGy9302Z6ALObdQ9DRZvUWnA9gk3aD_8eeLzCbm1g</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Charalambopoulos, Antonios</creator><creator>Gergidis, Leonidas N.</creator><creator>Kartalos, Giorgos</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7TB</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120901</creationdate><title>On the gradient elastic wave propagation in cylindrical waveguides with microstructure</title><author>Charalambopoulos, Antonios ; Gergidis, Leonidas N. ; Kartalos, Giorgos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-4583628782b975de0a63c8666b36dcfc2d249fc2f7896314ab927766933cf1d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>A. Smart materials</topic><topic>B. Elasticity</topic><topic>bones</topic><topic>byproducts</topic><topic>C. Analytical modeling</topic><topic>Dyadics</topic><topic>Elasticity</topic><topic>Fluid flow</topic><topic>Harmonics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>microstructure</topic><topic>Spectra</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charalambopoulos, Antonios</creatorcontrib><creatorcontrib>Gergidis, Leonidas N.</creatorcontrib><creatorcontrib>Kartalos, Giorgos</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Composites. Part B, Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charalambopoulos, Antonios</au><au>Gergidis, Leonidas N.</au><au>Kartalos, Giorgos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the gradient elastic wave propagation in cylindrical waveguides with microstructure</atitle><jtitle>Composites. Part B, Engineering</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>43</volume><issue>6</issue><spage>2613</spage><epage>2627</epage><pages>2613-2627</pages><issn>1359-8368</issn><eissn>1879-1069</eissn><abstract>The present work describes the development of a complete theoretical framework of wave propagation in cylindrical waveguides possessing microstructure. In parallel, a thorough investigation of the full 3-D model of wave propagation in cylinders is presented. The first step is the spectral decomposition of the boundary value problem emerging via wave propagation analysis. The spectral representation of the specific gradient elasticity problem reflects the ability to construct all the possible propagating modes in cylindrical geometry. Several byproducts arise along the present work, which constitute generalizations of well known important features of classical elasticity and are indispensable for modeling the gradient elasticity problem. We note the construction of the set of dyadic Navier eigenfunctions which constitute the generalization of the Navier eigenvectors. The restriction of the Navier eigendyadics on cylindrical surfaces gives birth to the dyadic cylindrical harmonics, which constitute the generalization of the well known vector harmonics. This set is also a basis in the sense that the trace of every dyadic field on a cylindrical surface can be represented as a countable superposition of dyadic cylindrical harmonics. The method aims at providing the necessary theoretical establishment for the determination of the dispersion curves emerging in cortical bones.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesb.2011.12.014</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-8368
ispartof Composites. Part B, Engineering, 2012-09, Vol.43 (6), p.2613-2627
issn 1359-8368
1879-1069
language eng
recordid cdi_proquest_miscellaneous_1770291094
source Elsevier ScienceDirect Journals
subjects A. Smart materials
B. Elasticity
bones
byproducts
C. Analytical modeling
Dyadics
Elasticity
Fluid flow
Harmonics
Mathematical analysis
Mathematical models
microstructure
Spectra
Wave propagation
title On the gradient elastic wave propagation in cylindrical waveguides with microstructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20gradient%20elastic%20wave%20propagation%20in%20cylindrical%20waveguides%20with%20microstructure&rft.jtitle=Composites.%20Part%20B,%20Engineering&rft.au=Charalambopoulos,%20Antonios&rft.date=2012-09-01&rft.volume=43&rft.issue=6&rft.spage=2613&rft.epage=2627&rft.pages=2613-2627&rft.issn=1359-8368&rft.eissn=1879-1069&rft_id=info:doi/10.1016/j.compositesb.2011.12.014&rft_dat=%3Cproquest_cross%3E1038321477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038321477&rft_id=info:pmid/&rft_els_id=S1359836812000054&rfr_iscdi=true