Quivers as calculators: counting, correlators and Riemann surfaces

A bstract The spectrum of chiral operators in supersymmetric quiver gauge theories is typically much larger in the free limit, where the superpotential terms vanish. We find that the finite N counting of operators in any free quiver theory, with a product of unitary gauge groups, can be described by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2013-04, Vol.2013 (4), p.1-103, Article 94
Hauptverfasser: Pasukonis, Jurgis, Ramgoolam, Sanjaye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue 4
container_start_page 1
container_title The journal of high energy physics
container_volume 2013
creator Pasukonis, Jurgis
Ramgoolam, Sanjaye
description A bstract The spectrum of chiral operators in supersymmetric quiver gauge theories is typically much larger in the free limit, where the superpotential terms vanish. We find that the finite N counting of operators in any free quiver theory, with a product of unitary gauge groups, can be described by associating Young diagrams and Littlewood-Richardson multiplicities to a simple modification of the quiver, which we call the split-node quiver. The large N limit leads to a surprisingly simple infinite product formula for counting gauge invariant operators, valid for any quiver with bifundamental fields. An orthogonal basis for the operators, in the finite N CFT inner product, is given in terms of quiver characters . These are constructed by inserting permutations in the split-node quivers and interpreting the resulting diagrams in terms of symmetric group matrix elements and branching coefficients. The fusion coefficients in the chiral ring - valid both in the UV and in the IR - are computed at finite N . The derivation follows simple diagrammatic moves on the quiver. The large N counting and correlators are expressed in terms of topological field theories on Riemann surfaces obtained by thickening the quiver. The TFTs are based on symmetric groups and defect observables associated with subgroups play an important role. We outline the application of the free field results to the construction of BPS operators in the case of non-zero super-potential.
doi_str_mv 10.1007/JHEP04(2013)094
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770289976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3585775201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-799d364ce20248884ed4f92b4a9f70e05881737b110c9c6d6f2578cd537bb8203</originalsourceid><addsrcrecordid>eNp1kM9LwzAcxYMoOKdnrwUvE6z7Jk2bxJuO6ZSBP9BzSNN0dHTpTBrB_96MehiCp-_j8XmPLw-hcwzXGIBNnxbzF6ATAji7BEEP0AgDESmnTBzu6WN04v0aAOdYwAjdvYbmyzifKJ9o1erQqr5z_ibRXbB9Y1dXUTlnBjtRtkreGrNR1iY-uFpp40_RUa1ab85-7xh93M_fZ4t0-fzwOLtdpjqjWZ8yIaqsoNoQIJRzTk1Fa0FKqkTNwEDOOWYZKzEGLXRRFTXJGddVHr2SE8jGaDL0bl33GYzv5abx2rStsqYLXmLGgHAhWBHRiz_ougvOxu8kLnIiSEGARmo6UNp13jtTy61rNsp9Swxyt6kcNpW7TWXcNCZgSPhI2pVxe73_RH4AqvF2_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652926204</pqid></control><display><type>article</type><title>Quivers as calculators: counting, correlators and Riemann surfaces</title><source>Springer Nature OA Free Journals</source><creator>Pasukonis, Jurgis ; Ramgoolam, Sanjaye</creator><creatorcontrib>Pasukonis, Jurgis ; Ramgoolam, Sanjaye</creatorcontrib><description>A bstract The spectrum of chiral operators in supersymmetric quiver gauge theories is typically much larger in the free limit, where the superpotential terms vanish. We find that the finite N counting of operators in any free quiver theory, with a product of unitary gauge groups, can be described by associating Young diagrams and Littlewood-Richardson multiplicities to a simple modification of the quiver, which we call the split-node quiver. The large N limit leads to a surprisingly simple infinite product formula for counting gauge invariant operators, valid for any quiver with bifundamental fields. An orthogonal basis for the operators, in the finite N CFT inner product, is given in terms of quiver characters . These are constructed by inserting permutations in the split-node quivers and interpreting the resulting diagrams in terms of symmetric group matrix elements and branching coefficients. The fusion coefficients in the chiral ring - valid both in the UV and in the IR - are computed at finite N . The derivation follows simple diagrammatic moves on the quiver. The large N counting and correlators are expressed in terms of topological field theories on Riemann surfaces obtained by thickening the quiver. The TFTs are based on symmetric groups and defect observables associated with subgroups play an important role. We outline the application of the free field results to the construction of BPS operators in the case of non-zero super-potential.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP04(2013)094</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Construction ; Correlators ; Counting ; Elementary Particles ; Gages ; Gauges ; High energy physics ; Mathematical analysis ; Operators ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Riemann surfaces ; String Theory</subject><ispartof>The journal of high energy physics, 2013-04, Vol.2013 (4), p.1-103, Article 94</ispartof><rights>SISSA, Trieste, Italy 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-799d364ce20248884ed4f92b4a9f70e05881737b110c9c6d6f2578cd537bb8203</citedby><cites>FETCH-LOGICAL-c343t-799d364ce20248884ed4f92b4a9f70e05881737b110c9c6d6f2578cd537bb8203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP04(2013)094$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP04(2013)094$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41118,41486,42187,42555,51317,51574</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP04(2013)094$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Pasukonis, Jurgis</creatorcontrib><creatorcontrib>Ramgoolam, Sanjaye</creatorcontrib><title>Quivers as calculators: counting, correlators and Riemann surfaces</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract The spectrum of chiral operators in supersymmetric quiver gauge theories is typically much larger in the free limit, where the superpotential terms vanish. We find that the finite N counting of operators in any free quiver theory, with a product of unitary gauge groups, can be described by associating Young diagrams and Littlewood-Richardson multiplicities to a simple modification of the quiver, which we call the split-node quiver. The large N limit leads to a surprisingly simple infinite product formula for counting gauge invariant operators, valid for any quiver with bifundamental fields. An orthogonal basis for the operators, in the finite N CFT inner product, is given in terms of quiver characters . These are constructed by inserting permutations in the split-node quivers and interpreting the resulting diagrams in terms of symmetric group matrix elements and branching coefficients. The fusion coefficients in the chiral ring - valid both in the UV and in the IR - are computed at finite N . The derivation follows simple diagrammatic moves on the quiver. The large N counting and correlators are expressed in terms of topological field theories on Riemann surfaces obtained by thickening the quiver. The TFTs are based on symmetric groups and defect observables associated with subgroups play an important role. We outline the application of the free field results to the construction of BPS operators in the case of non-zero super-potential.</description><subject>Classical and Quantum Gravitation</subject><subject>Construction</subject><subject>Correlators</subject><subject>Counting</subject><subject>Elementary Particles</subject><subject>Gages</subject><subject>Gauges</subject><subject>High energy physics</subject><subject>Mathematical analysis</subject><subject>Operators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Riemann surfaces</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM9LwzAcxYMoOKdnrwUvE6z7Jk2bxJuO6ZSBP9BzSNN0dHTpTBrB_96MehiCp-_j8XmPLw-hcwzXGIBNnxbzF6ATAji7BEEP0AgDESmnTBzu6WN04v0aAOdYwAjdvYbmyzifKJ9o1erQqr5z_ibRXbB9Y1dXUTlnBjtRtkreGrNR1iY-uFpp40_RUa1ab85-7xh93M_fZ4t0-fzwOLtdpjqjWZ8yIaqsoNoQIJRzTk1Fa0FKqkTNwEDOOWYZKzEGLXRRFTXJGddVHr2SE8jGaDL0bl33GYzv5abx2rStsqYLXmLGgHAhWBHRiz_ougvOxu8kLnIiSEGARmo6UNp13jtTy61rNsp9Swxyt6kcNpW7TWXcNCZgSPhI2pVxe73_RH4AqvF2_w</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Pasukonis, Jurgis</creator><creator>Ramgoolam, Sanjaye</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130401</creationdate><title>Quivers as calculators: counting, correlators and Riemann surfaces</title><author>Pasukonis, Jurgis ; Ramgoolam, Sanjaye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-799d364ce20248884ed4f92b4a9f70e05881737b110c9c6d6f2578cd537bb8203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Construction</topic><topic>Correlators</topic><topic>Counting</topic><topic>Elementary Particles</topic><topic>Gages</topic><topic>Gauges</topic><topic>High energy physics</topic><topic>Mathematical analysis</topic><topic>Operators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Riemann surfaces</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasukonis, Jurgis</creatorcontrib><creatorcontrib>Ramgoolam, Sanjaye</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pasukonis, Jurgis</au><au>Ramgoolam, Sanjaye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quivers as calculators: counting, correlators and Riemann surfaces</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>2013</volume><issue>4</issue><spage>1</spage><epage>103</epage><pages>1-103</pages><artnum>94</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract The spectrum of chiral operators in supersymmetric quiver gauge theories is typically much larger in the free limit, where the superpotential terms vanish. We find that the finite N counting of operators in any free quiver theory, with a product of unitary gauge groups, can be described by associating Young diagrams and Littlewood-Richardson multiplicities to a simple modification of the quiver, which we call the split-node quiver. The large N limit leads to a surprisingly simple infinite product formula for counting gauge invariant operators, valid for any quiver with bifundamental fields. An orthogonal basis for the operators, in the finite N CFT inner product, is given in terms of quiver characters . These are constructed by inserting permutations in the split-node quivers and interpreting the resulting diagrams in terms of symmetric group matrix elements and branching coefficients. The fusion coefficients in the chiral ring - valid both in the UV and in the IR - are computed at finite N . The derivation follows simple diagrammatic moves on the quiver. The large N counting and correlators are expressed in terms of topological field theories on Riemann surfaces obtained by thickening the quiver. The TFTs are based on symmetric groups and defect observables associated with subgroups play an important role. We outline the application of the free field results to the construction of BPS operators in the case of non-zero super-potential.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP04(2013)094</doi><tpages>103</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2013-04, Vol.2013 (4), p.1-103, Article 94
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_miscellaneous_1770289976
source Springer Nature OA Free Journals
subjects Classical and Quantum Gravitation
Construction
Correlators
Counting
Elementary Particles
Gages
Gauges
High energy physics
Mathematical analysis
Operators
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
Riemann surfaces
String Theory
title Quivers as calculators: counting, correlators and Riemann surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quivers%20as%20calculators:%20counting,%20correlators%20and%20Riemann%20surfaces&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Pasukonis,%20Jurgis&rft.date=2013-04-01&rft.volume=2013&rft.issue=4&rft.spage=1&rft.epage=103&rft.pages=1-103&rft.artnum=94&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP04(2013)094&rft_dat=%3Cproquest_C6C%3E3585775201%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652926204&rft_id=info:pmid/&rfr_iscdi=true