On the role of Re in the stress and temperature dependence of creep of Ni-base single crystal superalloys

In the present study we investigate the creep behavior of a Ni-base single crystal superalloy. We evaluate the stress and temperature dependence of the minimum creep rate, which shows a power law type of stress dependence (characterized by a stress exponent ) and an exponential type of temperature d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2015-03, Vol.628, p.382-395
Hauptverfasser: Wollgramm, P., Buck, H., Neuking, K., Parsa, A.B., Schuwalow, S., Rogal, J., Drautz, R., Eggeler, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue
container_start_page 382
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 628
creator Wollgramm, P.
Buck, H.
Neuking, K.
Parsa, A.B.
Schuwalow, S.
Rogal, J.
Drautz, R.
Eggeler, G.
description In the present study we investigate the creep behavior of a Ni-base single crystal superalloy. We evaluate the stress and temperature dependence of the minimum creep rate, which shows a power law type of stress dependence (characterized by a stress exponent ) and an exponential type of temperature dependence (characterized by an apparent activation energy ). Under conditions of high temperature (1323K) and low stress (160MPa) creep, and are determined as 5.3 and 529kJ/mol, respectively. For lower temperatures (1123K) and higher stresses (600MPa) the stress exponent is higher (8.5) while the apparent activation energy of creep is lower (382kJ/mol). We show that there is a general trend: stress exponents increase with increasing stress and decreasing temperature, while higher apparent activation energies are observed for lower stresses and higher temperatures. We use density functional theory (DFT) to calculate the activation energy of diffusion for Re in a binary Ni-Re alloy with low Re-concentrations. The resulting energy is almost a factor 2 smaller than the apparent activation energy of creep. We explain why it is not straightforward to rationalize the temperature dependence of creep merely on the basis of the diffusion of one alloying element. We show that the evolution of the microstructure also must be considered.
doi_str_mv 10.1016/j.msea.2015.01.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770289237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770289237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-8345e0db00e8145a23dc7aa83ee2c46ca9d42fc113ad6b60a11ab8073c1eea0c3</originalsourceid><addsrcrecordid>eNotkEtLxEAQhHNQcH38AU9z9JLYPZPnURZfsLggeh46k45mycvp5LD_3sQVCropqurwBcEtQoSA6f0h6oQp0oBJBLgIzoINFBrDBApzEVyKHAAAY0g2QbPv1fTNyg8tq6FW76yakyOTZxFFfaUm7kb2NM2eVcUj9xX37i_uPPO4Pm9NWJIsrab_WpacP8pErZJ5LbbtcJTr4LymVvjm_14Fn0-PH9uXcLd_ft0-7EKnc5jC3MQJQ1UCcI5xQtpULiPKDbN2ceqoqGJdO0RDVVqmQIhU5pAZh8wEzlwFd6fd0Q8_M8tku0Ycty31PMxiMctA54U22RLVp6jzg4jn2o6-6cgfLYJdWdqDXVnalaUFXATmF2pibAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770289237</pqid></control><display><type>article</type><title>On the role of Re in the stress and temperature dependence of creep of Ni-base single crystal superalloys</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wollgramm, P. ; Buck, H. ; Neuking, K. ; Parsa, A.B. ; Schuwalow, S. ; Rogal, J. ; Drautz, R. ; Eggeler, G.</creator><creatorcontrib>Wollgramm, P. ; Buck, H. ; Neuking, K. ; Parsa, A.B. ; Schuwalow, S. ; Rogal, J. ; Drautz, R. ; Eggeler, G.</creatorcontrib><description>In the present study we investigate the creep behavior of a Ni-base single crystal superalloy. We evaluate the stress and temperature dependence of the minimum creep rate, which shows a power law type of stress dependence (characterized by a stress exponent ) and an exponential type of temperature dependence (characterized by an apparent activation energy ). Under conditions of high temperature (1323K) and low stress (160MPa) creep, and are determined as 5.3 and 529kJ/mol, respectively. For lower temperatures (1123K) and higher stresses (600MPa) the stress exponent is higher (8.5) while the apparent activation energy of creep is lower (382kJ/mol). We show that there is a general trend: stress exponents increase with increasing stress and decreasing temperature, while higher apparent activation energies are observed for lower stresses and higher temperatures. We use density functional theory (DFT) to calculate the activation energy of diffusion for Re in a binary Ni-Re alloy with low Re-concentrations. The resulting energy is almost a factor 2 smaller than the apparent activation energy of creep. We explain why it is not straightforward to rationalize the temperature dependence of creep merely on the basis of the diffusion of one alloying element. We show that the evolution of the microstructure also must be considered.</description><identifier>ISSN: 0921-5093</identifier><identifier>DOI: 10.1016/j.msea.2015.01.010</identifier><language>eng</language><subject>Activation energy ; Creep (materials) ; Diffusion ; Exponents ; Microstructure ; Nickel ; Stresses ; Temperature dependence</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2015-03, Vol.628, p.382-395</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-8345e0db00e8145a23dc7aa83ee2c46ca9d42fc113ad6b60a11ab8073c1eea0c3</citedby><cites>FETCH-LOGICAL-c280t-8345e0db00e8145a23dc7aa83ee2c46ca9d42fc113ad6b60a11ab8073c1eea0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wollgramm, P.</creatorcontrib><creatorcontrib>Buck, H.</creatorcontrib><creatorcontrib>Neuking, K.</creatorcontrib><creatorcontrib>Parsa, A.B.</creatorcontrib><creatorcontrib>Schuwalow, S.</creatorcontrib><creatorcontrib>Rogal, J.</creatorcontrib><creatorcontrib>Drautz, R.</creatorcontrib><creatorcontrib>Eggeler, G.</creatorcontrib><title>On the role of Re in the stress and temperature dependence of creep of Ni-base single crystal superalloys</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>In the present study we investigate the creep behavior of a Ni-base single crystal superalloy. We evaluate the stress and temperature dependence of the minimum creep rate, which shows a power law type of stress dependence (characterized by a stress exponent ) and an exponential type of temperature dependence (characterized by an apparent activation energy ). Under conditions of high temperature (1323K) and low stress (160MPa) creep, and are determined as 5.3 and 529kJ/mol, respectively. For lower temperatures (1123K) and higher stresses (600MPa) the stress exponent is higher (8.5) while the apparent activation energy of creep is lower (382kJ/mol). We show that there is a general trend: stress exponents increase with increasing stress and decreasing temperature, while higher apparent activation energies are observed for lower stresses and higher temperatures. We use density functional theory (DFT) to calculate the activation energy of diffusion for Re in a binary Ni-Re alloy with low Re-concentrations. The resulting energy is almost a factor 2 smaller than the apparent activation energy of creep. We explain why it is not straightforward to rationalize the temperature dependence of creep merely on the basis of the diffusion of one alloying element. We show that the evolution of the microstructure also must be considered.</description><subject>Activation energy</subject><subject>Creep (materials)</subject><subject>Diffusion</subject><subject>Exponents</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Stresses</subject><subject>Temperature dependence</subject><issn>0921-5093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkEtLxEAQhHNQcH38AU9z9JLYPZPnURZfsLggeh46k45mycvp5LD_3sQVCropqurwBcEtQoSA6f0h6oQp0oBJBLgIzoINFBrDBApzEVyKHAAAY0g2QbPv1fTNyg8tq6FW76yakyOTZxFFfaUm7kb2NM2eVcUj9xX37i_uPPO4Pm9NWJIsrab_WpacP8pErZJ5LbbtcJTr4LymVvjm_14Fn0-PH9uXcLd_ft0-7EKnc5jC3MQJQ1UCcI5xQtpULiPKDbN2ceqoqGJdO0RDVVqmQIhU5pAZh8wEzlwFd6fd0Q8_M8tku0Ycty31PMxiMctA54U22RLVp6jzg4jn2o6-6cgfLYJdWdqDXVnalaUFXATmF2pibAM</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Wollgramm, P.</creator><creator>Buck, H.</creator><creator>Neuking, K.</creator><creator>Parsa, A.B.</creator><creator>Schuwalow, S.</creator><creator>Rogal, J.</creator><creator>Drautz, R.</creator><creator>Eggeler, G.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150301</creationdate><title>On the role of Re in the stress and temperature dependence of creep of Ni-base single crystal superalloys</title><author>Wollgramm, P. ; Buck, H. ; Neuking, K. ; Parsa, A.B. ; Schuwalow, S. ; Rogal, J. ; Drautz, R. ; Eggeler, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-8345e0db00e8145a23dc7aa83ee2c46ca9d42fc113ad6b60a11ab8073c1eea0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Activation energy</topic><topic>Creep (materials)</topic><topic>Diffusion</topic><topic>Exponents</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Stresses</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wollgramm, P.</creatorcontrib><creatorcontrib>Buck, H.</creatorcontrib><creatorcontrib>Neuking, K.</creatorcontrib><creatorcontrib>Parsa, A.B.</creatorcontrib><creatorcontrib>Schuwalow, S.</creatorcontrib><creatorcontrib>Rogal, J.</creatorcontrib><creatorcontrib>Drautz, R.</creatorcontrib><creatorcontrib>Eggeler, G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wollgramm, P.</au><au>Buck, H.</au><au>Neuking, K.</au><au>Parsa, A.B.</au><au>Schuwalow, S.</au><au>Rogal, J.</au><au>Drautz, R.</au><au>Eggeler, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the role of Re in the stress and temperature dependence of creep of Ni-base single crystal superalloys</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>628</volume><spage>382</spage><epage>395</epage><pages>382-395</pages><issn>0921-5093</issn><abstract>In the present study we investigate the creep behavior of a Ni-base single crystal superalloy. We evaluate the stress and temperature dependence of the minimum creep rate, which shows a power law type of stress dependence (characterized by a stress exponent ) and an exponential type of temperature dependence (characterized by an apparent activation energy ). Under conditions of high temperature (1323K) and low stress (160MPa) creep, and are determined as 5.3 and 529kJ/mol, respectively. For lower temperatures (1123K) and higher stresses (600MPa) the stress exponent is higher (8.5) while the apparent activation energy of creep is lower (382kJ/mol). We show that there is a general trend: stress exponents increase with increasing stress and decreasing temperature, while higher apparent activation energies are observed for lower stresses and higher temperatures. We use density functional theory (DFT) to calculate the activation energy of diffusion for Re in a binary Ni-Re alloy with low Re-concentrations. The resulting energy is almost a factor 2 smaller than the apparent activation energy of creep. We explain why it is not straightforward to rationalize the temperature dependence of creep merely on the basis of the diffusion of one alloying element. We show that the evolution of the microstructure also must be considered.</abstract><doi>10.1016/j.msea.2015.01.010</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2015-03, Vol.628, p.382-395
issn 0921-5093
language eng
recordid cdi_proquest_miscellaneous_1770289237
source ScienceDirect Journals (5 years ago - present)
subjects Activation energy
Creep (materials)
Diffusion
Exponents
Microstructure
Nickel
Stresses
Temperature dependence
title On the role of Re in the stress and temperature dependence of creep of Ni-base single crystal superalloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20role%20of%20Re%20in%20the%20stress%20and%20temperature%20dependence%20of%20creep%20of%20Ni-base%20single%20crystal%20superalloys&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Wollgramm,%20P.&rft.date=2015-03-01&rft.volume=628&rft.spage=382&rft.epage=395&rft.pages=382-395&rft.issn=0921-5093&rft_id=info:doi/10.1016/j.msea.2015.01.010&rft_dat=%3Cproquest_cross%3E1770289237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770289237&rft_id=info:pmid/&rfr_iscdi=true