Two-point Hermite interpolation in biangular coordinates
We construct Hermite interpolating curves in biangular coordinates, and provide sufficient conditions for their convexity. In a biangular coordinate system, the problem reduces to that of choosing suitable functions interpolating the biangular coordinates of the curve at its end points. The simplest...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2015-10, Vol.287, p.1-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct Hermite interpolating curves in biangular coordinates, and provide sufficient conditions for their convexity. In a biangular coordinate system, the problem reduces to that of choosing suitable functions interpolating the biangular coordinates of the curve at its end points. The simplest linear equations, , in biangular coordinates correspond to a sectrix of Maclaurin, which we extend by introducing two shape parameters that pull the curve towards the sides of its triangular envelope. In addition, we consider a class of curves whose biangular coordinates have a constant sum, and we analyze their shape and curvature. |
---|---|
ISSN: | 0377-0427 |
DOI: | 10.1016/j.cam.2015.02.040 |