Two-point Hermite interpolation in biangular coordinates

We construct Hermite interpolating curves in biangular coordinates, and provide sufficient conditions for their convexity. In a biangular coordinate system, the problem reduces to that of choosing suitable functions interpolating the biangular coordinates of the curve at its end points. The simplest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2015-10, Vol.287, p.1-11
Hauptverfasser: Ziatdinov, Rushan, Kim, Tae-wan, Nabiyev, Rifkat I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct Hermite interpolating curves in biangular coordinates, and provide sufficient conditions for their convexity. In a biangular coordinate system, the problem reduces to that of choosing suitable functions interpolating the biangular coordinates of the curve at its end points. The simplest linear equations, , in biangular coordinates correspond to a sectrix of Maclaurin, which we extend by introducing two shape parameters that pull the curve towards the sides of its triangular envelope. In addition, we consider a class of curves whose biangular coordinates have a constant sum, and we analyze their shape and curvature.
ISSN:0377-0427
DOI:10.1016/j.cam.2015.02.040