Dynamic Properties of Concrete at Moderately Elevated Temperatures

Reinforced concrete is widely used to not only provide structural support but also to mitigate the effects of radiation, malevolent attacks, and dynamic accidents. Dynamic tests were performed on 102 x 203 mm (4 x 8 in.) normalweight concrete (NWC) and fiber-reinforced concrete (FRC) cylinders using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACI materials journal 2015-09, Vol.112 (5), p.663-663
Hauptverfasser: Weidner, A M, Pantelides, C P, Richins, W D, Larson, T K, Blakeley, J E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 663
container_issue 5
container_start_page 663
container_title ACI materials journal
container_volume 112
creator Weidner, A M
Pantelides, C P
Richins, W D
Larson, T K
Blakeley, J E
description Reinforced concrete is widely used to not only provide structural support but also to mitigate the effects of radiation, malevolent attacks, and dynamic accidents. Dynamic tests were performed on 102 x 203 mm (4 x 8 in.) normalweight concrete (NWC) and fiber-reinforced concrete (FRC) cylinders using a drop hammer. Dynamic splitting tension and dynamic compression tests were performed at room temperature and at 204[degrees]C (400[degrees]F). The dynamic increase factor (DIF), which is the ratio of dynamic to quasi-static strength, and the strain rate were compared to existing models. The DIF for tension and compression increased with strain rate. For compression, a DIF up to 3.2 was recorded for strain rates up to 12 [s.sup.-1]. For tension, a DIF up to 4.1 was recorded for strain rates up to 1.8 [s.sup.-1]. Heated NWC and FRC specimens had lower DIFs compared to room-temperature specimens for dynamic compression and tension. The experimental DIFs followed closely the Modified Comite Euro-International du Beton (CEB) model for tension. Keywords: compression; drop hammer; dynamic increase factor; fibers; strain rate; temperature; tension.
doi_str_mv 10.14359/51687922
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770288427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A558678957</galeid><sourcerecordid>A558678957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-3d87c1e4261816103df20981695822ac454194ab88ad8738ba13d0dabfc01f4b3</originalsourceid><addsrcrecordid>eNpdkEtPwzAQhC0EEqVw4B9E4gKHFD_i2D6WUh5SERyK1FvkOGuUKomDnSD13-NSuKA97Gj07Wo0CF0SPCMZ4-qWk1wKRekRmhCVZalgYnOMJlhKlTLKN6foLIQtxjTnnE_Q3f2u021tkjfvevBDDSFxNlm4zngYINFD8uIq8HqAZpcsG_iKqkrW0PZ7c_QQztGJ1U2Ai989Re8Py_XiKV29Pj4v5qvUMKqGlFVSGAIZzYkkOcGsshSrKBWXlGqT8SwG1qWUOpJMlpqwCle6tAYTm5Vsiq4Pf3vvPkcIQ9HWwUDT6A7cGAoiBKZSZlRE9OofunWj72K6SFFKlOSYRGp2oD50A0XdWTd4beJUEBtxHdg6-nPOZS6k4vu3N4cD410IHmzR-7rVflcQXPzUX_zVz74BZCp04g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722198501</pqid></control><display><type>article</type><title>Dynamic Properties of Concrete at Moderately Elevated Temperatures</title><source>American Concrete Institute Online Journal Archives</source><creator>Weidner, A M ; Pantelides, C P ; Richins, W D ; Larson, T K ; Blakeley, J E</creator><creatorcontrib>Weidner, A M ; Pantelides, C P ; Richins, W D ; Larson, T K ; Blakeley, J E</creatorcontrib><description>Reinforced concrete is widely used to not only provide structural support but also to mitigate the effects of radiation, malevolent attacks, and dynamic accidents. Dynamic tests were performed on 102 x 203 mm (4 x 8 in.) normalweight concrete (NWC) and fiber-reinforced concrete (FRC) cylinders using a drop hammer. Dynamic splitting tension and dynamic compression tests were performed at room temperature and at 204[degrees]C (400[degrees]F). The dynamic increase factor (DIF), which is the ratio of dynamic to quasi-static strength, and the strain rate were compared to existing models. The DIF for tension and compression increased with strain rate. For compression, a DIF up to 3.2 was recorded for strain rates up to 12 [s.sup.-1]. For tension, a DIF up to 4.1 was recorded for strain rates up to 1.8 [s.sup.-1]. Heated NWC and FRC specimens had lower DIFs compared to room-temperature specimens for dynamic compression and tension. The experimental DIFs followed closely the Modified Comite Euro-International du Beton (CEB) model for tension. Keywords: compression; drop hammer; dynamic increase factor; fibers; strain rate; temperature; tension.</description><identifier>ISSN: 0889-325X</identifier><identifier>EISSN: 1944-737X</identifier><identifier>DOI: 10.14359/51687922</identifier><language>eng</language><publisher>Farmington Hills: American Concrete Institute</publisher><subject>ACI ; Compressing ; Concrete ; Concretes ; Dynamic tests ; Dynamics ; High temperature ; Materials science ; Splitting ; Strain rate ; Temperature ; Temperature effects</subject><ispartof>ACI materials journal, 2015-09, Vol.112 (5), p.663-663</ispartof><rights>COPYRIGHT 2015 American Concrete Institute</rights><rights>Copyright American Concrete Institute Sep/Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-3d87c1e4261816103df20981695822ac454194ab88ad8738ba13d0dabfc01f4b3</citedby><cites>FETCH-LOGICAL-c329t-3d87c1e4261816103df20981695822ac454194ab88ad8738ba13d0dabfc01f4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Weidner, A M</creatorcontrib><creatorcontrib>Pantelides, C P</creatorcontrib><creatorcontrib>Richins, W D</creatorcontrib><creatorcontrib>Larson, T K</creatorcontrib><creatorcontrib>Blakeley, J E</creatorcontrib><title>Dynamic Properties of Concrete at Moderately Elevated Temperatures</title><title>ACI materials journal</title><description>Reinforced concrete is widely used to not only provide structural support but also to mitigate the effects of radiation, malevolent attacks, and dynamic accidents. Dynamic tests were performed on 102 x 203 mm (4 x 8 in.) normalweight concrete (NWC) and fiber-reinforced concrete (FRC) cylinders using a drop hammer. Dynamic splitting tension and dynamic compression tests were performed at room temperature and at 204[degrees]C (400[degrees]F). The dynamic increase factor (DIF), which is the ratio of dynamic to quasi-static strength, and the strain rate were compared to existing models. The DIF for tension and compression increased with strain rate. For compression, a DIF up to 3.2 was recorded for strain rates up to 12 [s.sup.-1]. For tension, a DIF up to 4.1 was recorded for strain rates up to 1.8 [s.sup.-1]. Heated NWC and FRC specimens had lower DIFs compared to room-temperature specimens for dynamic compression and tension. The experimental DIFs followed closely the Modified Comite Euro-International du Beton (CEB) model for tension. Keywords: compression; drop hammer; dynamic increase factor; fibers; strain rate; temperature; tension.</description><subject>ACI</subject><subject>Compressing</subject><subject>Concrete</subject><subject>Concretes</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>High temperature</subject><subject>Materials science</subject><subject>Splitting</subject><subject>Strain rate</subject><subject>Temperature</subject><subject>Temperature effects</subject><issn>0889-325X</issn><issn>1944-737X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtPwzAQhC0EEqVw4B9E4gKHFD_i2D6WUh5SERyK1FvkOGuUKomDnSD13-NSuKA97Gj07Wo0CF0SPCMZ4-qWk1wKRekRmhCVZalgYnOMJlhKlTLKN6foLIQtxjTnnE_Q3f2u021tkjfvevBDDSFxNlm4zngYINFD8uIq8HqAZpcsG_iKqkrW0PZ7c_QQztGJ1U2Ai989Re8Py_XiKV29Pj4v5qvUMKqGlFVSGAIZzYkkOcGsshSrKBWXlGqT8SwG1qWUOpJMlpqwCle6tAYTm5Vsiq4Pf3vvPkcIQ9HWwUDT6A7cGAoiBKZSZlRE9OofunWj72K6SFFKlOSYRGp2oD50A0XdWTd4beJUEBtxHdg6-nPOZS6k4vu3N4cD410IHmzR-7rVflcQXPzUX_zVz74BZCp04g</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Weidner, A M</creator><creator>Pantelides, C P</creator><creator>Richins, W D</creator><creator>Larson, T K</creator><creator>Blakeley, J E</creator><general>American Concrete Institute</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QQ</scope><scope>7RQ</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20150901</creationdate><title>Dynamic Properties of Concrete at Moderately Elevated Temperatures</title><author>Weidner, A M ; Pantelides, C P ; Richins, W D ; Larson, T K ; Blakeley, J E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-3d87c1e4261816103df20981695822ac454194ab88ad8738ba13d0dabfc01f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ACI</topic><topic>Compressing</topic><topic>Concrete</topic><topic>Concretes</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>High temperature</topic><topic>Materials science</topic><topic>Splitting</topic><topic>Strain rate</topic><topic>Temperature</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weidner, A M</creatorcontrib><creatorcontrib>Pantelides, C P</creatorcontrib><creatorcontrib>Richins, W D</creatorcontrib><creatorcontrib>Larson, T K</creatorcontrib><creatorcontrib>Blakeley, J E</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Ceramic Abstracts</collection><collection>Career &amp; Technical Education Database</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>ACI materials journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weidner, A M</au><au>Pantelides, C P</au><au>Richins, W D</au><au>Larson, T K</au><au>Blakeley, J E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Properties of Concrete at Moderately Elevated Temperatures</atitle><jtitle>ACI materials journal</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>112</volume><issue>5</issue><spage>663</spage><epage>663</epage><pages>663-663</pages><issn>0889-325X</issn><eissn>1944-737X</eissn><abstract>Reinforced concrete is widely used to not only provide structural support but also to mitigate the effects of radiation, malevolent attacks, and dynamic accidents. Dynamic tests were performed on 102 x 203 mm (4 x 8 in.) normalweight concrete (NWC) and fiber-reinforced concrete (FRC) cylinders using a drop hammer. Dynamic splitting tension and dynamic compression tests were performed at room temperature and at 204[degrees]C (400[degrees]F). The dynamic increase factor (DIF), which is the ratio of dynamic to quasi-static strength, and the strain rate were compared to existing models. The DIF for tension and compression increased with strain rate. For compression, a DIF up to 3.2 was recorded for strain rates up to 12 [s.sup.-1]. For tension, a DIF up to 4.1 was recorded for strain rates up to 1.8 [s.sup.-1]. Heated NWC and FRC specimens had lower DIFs compared to room-temperature specimens for dynamic compression and tension. The experimental DIFs followed closely the Modified Comite Euro-International du Beton (CEB) model for tension. Keywords: compression; drop hammer; dynamic increase factor; fibers; strain rate; temperature; tension.</abstract><cop>Farmington Hills</cop><pub>American Concrete Institute</pub><doi>10.14359/51687922</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0889-325X
ispartof ACI materials journal, 2015-09, Vol.112 (5), p.663-663
issn 0889-325X
1944-737X
language eng
recordid cdi_proquest_miscellaneous_1770288427
source American Concrete Institute Online Journal Archives
subjects ACI
Compressing
Concrete
Concretes
Dynamic tests
Dynamics
High temperature
Materials science
Splitting
Strain rate
Temperature
Temperature effects
title Dynamic Properties of Concrete at Moderately Elevated Temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Properties%20of%20Concrete%20at%20Moderately%20Elevated%20Temperatures&rft.jtitle=ACI%20materials%20journal&rft.au=Weidner,%20A%20M&rft.date=2015-09-01&rft.volume=112&rft.issue=5&rft.spage=663&rft.epage=663&rft.pages=663-663&rft.issn=0889-325X&rft.eissn=1944-737X&rft_id=info:doi/10.14359/51687922&rft_dat=%3Cgale_proqu%3EA558678957%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722198501&rft_id=info:pmid/&rft_galeid=A558678957&rfr_iscdi=true