Influence of Heat Treatment on the Microstructure and Corrosion Resistance of 13 Wt Pct Cr-Type Martensitic Stainless Steel

The effect of heat treatment on the microstructure and the electrochemical properties of a typical corrosion-resistant plastic mold steel in Cl − -containing solution were studied in this research. Through X-ray diffraction patterns, SEM and TEM analysis, it was found that the sequence of the precip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2015-12, Vol.46 (12), p.6090-6102
Hauptverfasser: Lu, Si-Yuan, Yao, Ke-Fu, Chen, Yun-Bo, Wang, Miao-Hui, Ge, Xue-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6102
container_issue 12
container_start_page 6090
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 46
creator Lu, Si-Yuan
Yao, Ke-Fu
Chen, Yun-Bo
Wang, Miao-Hui
Ge, Xue-Yuan
description The effect of heat treatment on the microstructure and the electrochemical properties of a typical corrosion-resistant plastic mold steel in Cl − -containing solution were studied in this research. Through X-ray diffraction patterns, SEM and TEM analysis, it was found that the sequence of the precipitates in the steels tempered at 573 K, 773 K, and 923 K (300 °C, 500 °C, and 650 °C) was θ -M 3 C carbides, nano-sized Cr-rich M 23 C 6 carbides, and micro/submicron-sized Cr-rich M 23 C 6 carbides, respectively. The results of the electrochemical experiments showed that the pitting potential of the as-quenched martensitic stainless steels increased with the austenitizing temperature. However, the corrosion resistance of the steels would decreased after tempering, especially when tempered at 773 K (500 °C), no passivation regime could be found in the polarization curve of the MSSs and no effective passive film could be formed on the steels in Cl − -containing environments. The present results suggested that the temperature around 773 K (500 °C) should be avoided for tempering process of MSS used as plastic molds.
doi_str_mv 10.1007/s11661-015-3180-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770287254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3858064981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-beb13aac0a4bb53fc6068e7df0d17bf37660214ffa5af3e457aef366d2f7d98f3</originalsourceid><addsrcrecordid>eNp1kcFO3DAQhi3UStBtH6A3S1x6MczEib05olULSCBQu4ij5TjjNijrbG3nwIF34Vl4MrxaDhVSLzMj6_v_seZn7CvCCQLo04SoFArARkhcgsADdoRNLQW2NXwoM2gpGlXJQ_YppQcAwFaqI_Z0Gfw4U3DEJ88vyGa-jqVuKGQ-BZ7_EL8eXJxSjrPLcyRuQ89XUyxPQwF-UhpStm8GKF-e7_PL863LfBXF-nFb5DZmCmnIg-O_sh3CSCmViWj8zD56Oyb68tYX7O7H9_XqQlzdnF-uzq6Eq7HNoqMOpbUObN11jfROgVqS7j30qDsvtVJQYe29bayXVDfakpdK9ZXXfbv0csG-7X23cfo7U8pmMyRH42gDTXMyqDVUS12Vgy3Y8Tv0YZpjKL8rlISmVWVdoXBP7S6TInmzjcPGxkeDYHaBmH0gpgRidoEYLJpqr0mFDb8p_uP8X9ErBwWQdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730596376</pqid></control><display><type>article</type><title>Influence of Heat Treatment on the Microstructure and Corrosion Resistance of 13 Wt Pct Cr-Type Martensitic Stainless Steel</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, Si-Yuan ; Yao, Ke-Fu ; Chen, Yun-Bo ; Wang, Miao-Hui ; Ge, Xue-Yuan</creator><creatorcontrib>Lu, Si-Yuan ; Yao, Ke-Fu ; Chen, Yun-Bo ; Wang, Miao-Hui ; Ge, Xue-Yuan</creatorcontrib><description>The effect of heat treatment on the microstructure and the electrochemical properties of a typical corrosion-resistant plastic mold steel in Cl − -containing solution were studied in this research. Through X-ray diffraction patterns, SEM and TEM analysis, it was found that the sequence of the precipitates in the steels tempered at 573 K, 773 K, and 923 K (300 °C, 500 °C, and 650 °C) was θ -M 3 C carbides, nano-sized Cr-rich M 23 C 6 carbides, and micro/submicron-sized Cr-rich M 23 C 6 carbides, respectively. The results of the electrochemical experiments showed that the pitting potential of the as-quenched martensitic stainless steels increased with the austenitizing temperature. However, the corrosion resistance of the steels would decreased after tempering, especially when tempered at 773 K (500 °C), no passivation regime could be found in the polarization curve of the MSSs and no effective passive film could be formed on the steels in Cl − -containing environments. The present results suggested that the temperature around 773 K (500 °C) should be avoided for tempering process of MSS used as plastic molds.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-015-3180-1</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium ; Corrosion resistance ; Heat treating ; Heat treatment ; Martensitic stainless steel ; Materials Science ; Metallic Materials ; Microstructure ; Molds ; Nanotechnology ; Steels ; Structural Materials ; Surfaces and Interfaces ; Tempering ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2015-12, Vol.46 (12), p.6090-6102</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-beb13aac0a4bb53fc6068e7df0d17bf37660214ffa5af3e457aef366d2f7d98f3</citedby><cites>FETCH-LOGICAL-c419t-beb13aac0a4bb53fc6068e7df0d17bf37660214ffa5af3e457aef366d2f7d98f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-015-3180-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-015-3180-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lu, Si-Yuan</creatorcontrib><creatorcontrib>Yao, Ke-Fu</creatorcontrib><creatorcontrib>Chen, Yun-Bo</creatorcontrib><creatorcontrib>Wang, Miao-Hui</creatorcontrib><creatorcontrib>Ge, Xue-Yuan</creatorcontrib><title>Influence of Heat Treatment on the Microstructure and Corrosion Resistance of 13 Wt Pct Cr-Type Martensitic Stainless Steel</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The effect of heat treatment on the microstructure and the electrochemical properties of a typical corrosion-resistant plastic mold steel in Cl − -containing solution were studied in this research. Through X-ray diffraction patterns, SEM and TEM analysis, it was found that the sequence of the precipitates in the steels tempered at 573 K, 773 K, and 923 K (300 °C, 500 °C, and 650 °C) was θ -M 3 C carbides, nano-sized Cr-rich M 23 C 6 carbides, and micro/submicron-sized Cr-rich M 23 C 6 carbides, respectively. The results of the electrochemical experiments showed that the pitting potential of the as-quenched martensitic stainless steels increased with the austenitizing temperature. However, the corrosion resistance of the steels would decreased after tempering, especially when tempered at 773 K (500 °C), no passivation regime could be found in the polarization curve of the MSSs and no effective passive film could be formed on the steels in Cl − -containing environments. The present results suggested that the temperature around 773 K (500 °C) should be avoided for tempering process of MSS used as plastic molds.</description><subject>Carbides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Corrosion resistance</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Martensitic stainless steel</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Molds</subject><subject>Nanotechnology</subject><subject>Steels</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Tempering</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kcFO3DAQhi3UStBtH6A3S1x6MczEib05olULSCBQu4ij5TjjNijrbG3nwIF34Vl4MrxaDhVSLzMj6_v_seZn7CvCCQLo04SoFArARkhcgsADdoRNLQW2NXwoM2gpGlXJQ_YppQcAwFaqI_Z0Gfw4U3DEJ88vyGa-jqVuKGQ-BZ7_EL8eXJxSjrPLcyRuQ89XUyxPQwF-UhpStm8GKF-e7_PL863LfBXF-nFb5DZmCmnIg-O_sh3CSCmViWj8zD56Oyb68tYX7O7H9_XqQlzdnF-uzq6Eq7HNoqMOpbUObN11jfROgVqS7j30qDsvtVJQYe29bayXVDfakpdK9ZXXfbv0csG-7X23cfo7U8pmMyRH42gDTXMyqDVUS12Vgy3Y8Tv0YZpjKL8rlISmVWVdoXBP7S6TInmzjcPGxkeDYHaBmH0gpgRidoEYLJpqr0mFDb8p_uP8X9ErBwWQdg</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Lu, Si-Yuan</creator><creator>Yao, Ke-Fu</creator><creator>Chen, Yun-Bo</creator><creator>Wang, Miao-Hui</creator><creator>Ge, Xue-Yuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7SE</scope></search><sort><creationdate>20151201</creationdate><title>Influence of Heat Treatment on the Microstructure and Corrosion Resistance of 13 Wt Pct Cr-Type Martensitic Stainless Steel</title><author>Lu, Si-Yuan ; Yao, Ke-Fu ; Chen, Yun-Bo ; Wang, Miao-Hui ; Ge, Xue-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-beb13aac0a4bb53fc6068e7df0d17bf37660214ffa5af3e457aef366d2f7d98f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Corrosion resistance</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Martensitic stainless steel</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Molds</topic><topic>Nanotechnology</topic><topic>Steels</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Tempering</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Si-Yuan</creatorcontrib><creatorcontrib>Yao, Ke-Fu</creatorcontrib><creatorcontrib>Chen, Yun-Bo</creatorcontrib><creatorcontrib>Wang, Miao-Hui</creatorcontrib><creatorcontrib>Ge, Xue-Yuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Corrosion Abstracts</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Si-Yuan</au><au>Yao, Ke-Fu</au><au>Chen, Yun-Bo</au><au>Wang, Miao-Hui</au><au>Ge, Xue-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Heat Treatment on the Microstructure and Corrosion Resistance of 13 Wt Pct Cr-Type Martensitic Stainless Steel</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>46</volume><issue>12</issue><spage>6090</spage><epage>6102</epage><pages>6090-6102</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The effect of heat treatment on the microstructure and the electrochemical properties of a typical corrosion-resistant plastic mold steel in Cl − -containing solution were studied in this research. Through X-ray diffraction patterns, SEM and TEM analysis, it was found that the sequence of the precipitates in the steels tempered at 573 K, 773 K, and 923 K (300 °C, 500 °C, and 650 °C) was θ -M 3 C carbides, nano-sized Cr-rich M 23 C 6 carbides, and micro/submicron-sized Cr-rich M 23 C 6 carbides, respectively. The results of the electrochemical experiments showed that the pitting potential of the as-quenched martensitic stainless steels increased with the austenitizing temperature. However, the corrosion resistance of the steels would decreased after tempering, especially when tempered at 773 K (500 °C), no passivation regime could be found in the polarization curve of the MSSs and no effective passive film could be formed on the steels in Cl − -containing environments. The present results suggested that the temperature around 773 K (500 °C) should be avoided for tempering process of MSS used as plastic molds.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-015-3180-1</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2015-12, Vol.46 (12), p.6090-6102
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_1770287254
source SpringerLink Journals - AutoHoldings
subjects Carbides
Characterization and Evaluation of Materials
Chemistry and Materials Science
Chromium
Corrosion resistance
Heat treating
Heat treatment
Martensitic stainless steel
Materials Science
Metallic Materials
Microstructure
Molds
Nanotechnology
Steels
Structural Materials
Surfaces and Interfaces
Tempering
Thin Films
title Influence of Heat Treatment on the Microstructure and Corrosion Resistance of 13 Wt Pct Cr-Type Martensitic Stainless Steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Heat%20Treatment%20on%20the%20Microstructure%20and%20Corrosion%20Resistance%20of%2013%C2%A0Wt%C2%A0Pct%20Cr-Type%20Martensitic%20Stainless%20Steel&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Lu,%20Si-Yuan&rft.date=2015-12-01&rft.volume=46&rft.issue=12&rft.spage=6090&rft.epage=6102&rft.pages=6090-6102&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-015-3180-1&rft_dat=%3Cproquest_cross%3E3858064981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730596376&rft_id=info:pmid/&rfr_iscdi=true