Thermoelectric and thermospin transport in a ballistic junction of graphene

We consider theoretically a wide graphene ribbon that is attached on both ends to electronic reservoirs, which generally have different temperatures. The graphene ribbon is assumed to be deposited on a substrate that leads to a spin-orbit coupling of the Rashba type. We calculate the thermally induc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2015-08, Vol.92 (8), Article 085418
Hauptverfasser: Inglot, M., Dugaev, V. K., Barnaś, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 92
creator Inglot, M.
Dugaev, V. K.
Barnaś, J.
description We consider theoretically a wide graphene ribbon that is attached on both ends to electronic reservoirs, which generally have different temperatures. The graphene ribbon is assumed to be deposited on a substrate that leads to a spin-orbit coupling of the Rashba type. We calculate the thermally induced charge current in the ballistic transport regime as well as the thermoelectric voltage (Seebeck effect). Apart from this, we also consider thermally induced spin current and spin polarization of the graphene ribbon. The spin currents are shown to have generally two components; one parallel to the temperature gradient and the other perpendicular to this gradient. The latter corresponds to the spin current due to the spin Nernst effect. Additionally, we also consider the heat current between the reservoirs due to transfer of electrons.
doi_str_mv 10.1103/PhysRevB.92.085418
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770285246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770285246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-ac51157cdf02d6a53d81338722294802ae44500c38d66ca2955d25ecec9546353</originalsourceid><addsrcrecordid>eNo1kE1LAzEURYMoWKt_wNUs3Ux9eUlmkqUWv7CgSAV3IWYydso0GZNU6L93tLp6910Od3EIOacwoxTY5fNql17c1_VM4Qyk4FQekAkVAkpk4u1wzKBkCRTpMTlJaQ1AueI4IY_LlYub4Hpnc-xsYXxT5N8qDZ0vcjQ-DSHmYnxM8W76vkt55NZbb3MXfBHa4iOaYeW8OyVHremTO_u7U_J6e7Oc35eLp7uH-dWitCghl8YKSkVtmxawqYxgjaSMyRoRFZeAxnEuACyTTVVZg0qIBoWzzirBKybYlFzsd4cYPrcuZb3pknV9b7wL26RpXQNKgSM8JbhHbQwpRdfqIXYbE3eagv4xp__NaYV6b459A4cvY0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770285246</pqid></control><display><type>article</type><title>Thermoelectric and thermospin transport in a ballistic junction of graphene</title><source>American Physical Society Journals</source><creator>Inglot, M. ; Dugaev, V. K. ; Barnaś, J.</creator><creatorcontrib>Inglot, M. ; Dugaev, V. K. ; Barnaś, J.</creatorcontrib><description>We consider theoretically a wide graphene ribbon that is attached on both ends to electronic reservoirs, which generally have different temperatures. The graphene ribbon is assumed to be deposited on a substrate that leads to a spin-orbit coupling of the Rashba type. We calculate the thermally induced charge current in the ballistic transport regime as well as the thermoelectric voltage (Seebeck effect). Apart from this, we also consider thermally induced spin current and spin polarization of the graphene ribbon. The spin currents are shown to have generally two components; one parallel to the temperature gradient and the other perpendicular to this gradient. The latter corresponds to the spin current due to the spin Nernst effect. Additionally, we also consider the heat current between the reservoirs due to transfer of electrons.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.92.085418</identifier><language>eng</language><subject>Condensed matter ; Electric current ; Graphene ; Reservoirs ; Ribbons ; Spintronics ; Thermoelectricity ; Transport</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2015-08, Vol.92 (8), Article 085418</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-ac51157cdf02d6a53d81338722294802ae44500c38d66ca2955d25ecec9546353</citedby><cites>FETCH-LOGICAL-c280t-ac51157cdf02d6a53d81338722294802ae44500c38d66ca2955d25ecec9546353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Inglot, M.</creatorcontrib><creatorcontrib>Dugaev, V. K.</creatorcontrib><creatorcontrib>Barnaś, J.</creatorcontrib><title>Thermoelectric and thermospin transport in a ballistic junction of graphene</title><title>Physical review. B, Condensed matter and materials physics</title><description>We consider theoretically a wide graphene ribbon that is attached on both ends to electronic reservoirs, which generally have different temperatures. The graphene ribbon is assumed to be deposited on a substrate that leads to a spin-orbit coupling of the Rashba type. We calculate the thermally induced charge current in the ballistic transport regime as well as the thermoelectric voltage (Seebeck effect). Apart from this, we also consider thermally induced spin current and spin polarization of the graphene ribbon. The spin currents are shown to have generally two components; one parallel to the temperature gradient and the other perpendicular to this gradient. The latter corresponds to the spin current due to the spin Nernst effect. Additionally, we also consider the heat current between the reservoirs due to transfer of electrons.</description><subject>Condensed matter</subject><subject>Electric current</subject><subject>Graphene</subject><subject>Reservoirs</subject><subject>Ribbons</subject><subject>Spintronics</subject><subject>Thermoelectricity</subject><subject>Transport</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEURYMoWKt_wNUs3Ux9eUlmkqUWv7CgSAV3IWYydso0GZNU6L93tLp6910Od3EIOacwoxTY5fNql17c1_VM4Qyk4FQekAkVAkpk4u1wzKBkCRTpMTlJaQ1AueI4IY_LlYub4Hpnc-xsYXxT5N8qDZ0vcjQ-DSHmYnxM8W76vkt55NZbb3MXfBHa4iOaYeW8OyVHremTO_u7U_J6e7Oc35eLp7uH-dWitCghl8YKSkVtmxawqYxgjaSMyRoRFZeAxnEuACyTTVVZg0qIBoWzzirBKybYlFzsd4cYPrcuZb3pknV9b7wL26RpXQNKgSM8JbhHbQwpRdfqIXYbE3eagv4xp__NaYV6b459A4cvY0g</recordid><startdate>20150817</startdate><enddate>20150817</enddate><creator>Inglot, M.</creator><creator>Dugaev, V. K.</creator><creator>Barnaś, J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150817</creationdate><title>Thermoelectric and thermospin transport in a ballistic junction of graphene</title><author>Inglot, M. ; Dugaev, V. K. ; Barnaś, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-ac51157cdf02d6a53d81338722294802ae44500c38d66ca2955d25ecec9546353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Condensed matter</topic><topic>Electric current</topic><topic>Graphene</topic><topic>Reservoirs</topic><topic>Ribbons</topic><topic>Spintronics</topic><topic>Thermoelectricity</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inglot, M.</creatorcontrib><creatorcontrib>Dugaev, V. K.</creatorcontrib><creatorcontrib>Barnaś, J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inglot, M.</au><au>Dugaev, V. K.</au><au>Barnaś, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric and thermospin transport in a ballistic junction of graphene</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2015-08-17</date><risdate>2015</risdate><volume>92</volume><issue>8</issue><artnum>085418</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We consider theoretically a wide graphene ribbon that is attached on both ends to electronic reservoirs, which generally have different temperatures. The graphene ribbon is assumed to be deposited on a substrate that leads to a spin-orbit coupling of the Rashba type. We calculate the thermally induced charge current in the ballistic transport regime as well as the thermoelectric voltage (Seebeck effect). Apart from this, we also consider thermally induced spin current and spin polarization of the graphene ribbon. The spin currents are shown to have generally two components; one parallel to the temperature gradient and the other perpendicular to this gradient. The latter corresponds to the spin current due to the spin Nernst effect. Additionally, we also consider the heat current between the reservoirs due to transfer of electrons.</abstract><doi>10.1103/PhysRevB.92.085418</doi></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2015-08, Vol.92 (8), Article 085418
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1770285246
source American Physical Society Journals
subjects Condensed matter
Electric current
Graphene
Reservoirs
Ribbons
Spintronics
Thermoelectricity
Transport
title Thermoelectric and thermospin transport in a ballistic junction of graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20and%20thermospin%20transport%20in%20a%20ballistic%20junction%20of%20graphene&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Inglot,%20M.&rft.date=2015-08-17&rft.volume=92&rft.issue=8&rft.artnum=085418&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.92.085418&rft_dat=%3Cproquest_cross%3E1770285246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770285246&rft_id=info:pmid/&rfr_iscdi=true