Automatic detection of zebra crossings from mobile LiDAR data
An algorithm for the automatic detection of zebra crossings from mobile LiDAR data is developed and tested to be applied for road management purposes. The algorithm consists of several subsequent processes starting with road segmentation by performing a curvature analysis for each laser cycle. Then,...
Gespeichert in:
Veröffentlicht in: | Optics and laser technology 2015-07, Vol.70, p.63-70 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | |
container_start_page | 63 |
container_title | Optics and laser technology |
container_volume | 70 |
creator | Riveiro, B. González-Jorge, H. Martínez-Sánchez, J. Díaz-Vilariño, L. Arias, P. |
description | An algorithm for the automatic detection of zebra crossings from mobile LiDAR data is developed and tested to be applied for road management purposes. The algorithm consists of several subsequent processes starting with road segmentation by performing a curvature analysis for each laser cycle. Then, intensity images are created from the point cloud using rasterization techniques, in order to detect zebra crossing using the Standard Hough Transform and logical constrains. To optimize the results, image processing algorithms are applied to the intensity images from the point cloud. These algorithms include binarization to separate the painting area from the rest of the pavement, median filtering to avoid noisy points, and mathematical morphology to fill the gaps between the pixels in the border of white marks. Once the road marking is detected, its position is calculated. This information is valuable for inventorying purposes of road managers that use Geographic Information Systems.
The performance of the algorithm has been evaluated over several mobile LiDAR strips accounting for a total of 30 zebra crossings. That test showed a completeness of 83%. Non-detected marks mainly come from painting deterioration of the zebra crossing or by occlusions in the point cloud produced by other vehicles on the road.
•Road segmentation using curvature analysis.•LiDAR to image conversion of road data.•Implementation of Generalized Hough Transform to detect zebra crossings. |
doi_str_mv | 10.1016/j.optlastec.2015.01.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770281763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030399215000237</els_id><sourcerecordid>1770281763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-28bbe5c004e4a0afa6307519dccb3549afca65272696fc25cd4e8e0a14c83fd73</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD5-g1m6ac2jadqFizI-YUAQXYc0vZEMbTMmGUF_vRlH3AoH7uacc-_9ELqgpKSE1lfr0m_SqGMCUzJCRUloFj1AC9rItmCiEodoQQgnBW9bdoxOYlwTQqpa8AW67rbJTzo5gwfIFcn5GXuLv6APGpvgY3TzW8Q2-AlPvncj4JW76Z7xoJM-Q0dWjxHOf-cper27fVk-FKun-8dltyoMr5pUsKbvQZi8EypNtNU1J1LQdjCm56JqtTW6Fkyyuq2tYcIMFTRANK1Mw-0g-Sm63Pdugn_fQkxqctHAOOoZ_DYqKiVhDZU1z1a5t_7cHsCqTXCTDp-KErUDptbqD5jaAVOEZtGc7PZJyJ98OAgqGgezgcGFDEYN3v3b8Q00gHiG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770281763</pqid></control><display><type>article</type><title>Automatic detection of zebra crossings from mobile LiDAR data</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Riveiro, B. ; González-Jorge, H. ; Martínez-Sánchez, J. ; Díaz-Vilariño, L. ; Arias, P.</creator><creatorcontrib>Riveiro, B. ; González-Jorge, H. ; Martínez-Sánchez, J. ; Díaz-Vilariño, L. ; Arias, P.</creatorcontrib><description>An algorithm for the automatic detection of zebra crossings from mobile LiDAR data is developed and tested to be applied for road management purposes. The algorithm consists of several subsequent processes starting with road segmentation by performing a curvature analysis for each laser cycle. Then, intensity images are created from the point cloud using rasterization techniques, in order to detect zebra crossing using the Standard Hough Transform and logical constrains. To optimize the results, image processing algorithms are applied to the intensity images from the point cloud. These algorithms include binarization to separate the painting area from the rest of the pavement, median filtering to avoid noisy points, and mathematical morphology to fill the gaps between the pixels in the border of white marks. Once the road marking is detected, its position is calculated. This information is valuable for inventorying purposes of road managers that use Geographic Information Systems.
The performance of the algorithm has been evaluated over several mobile LiDAR strips accounting for a total of 30 zebra crossings. That test showed a completeness of 83%. Non-detected marks mainly come from painting deterioration of the zebra crossing or by occlusions in the point cloud produced by other vehicles on the road.
•Road segmentation using curvature analysis.•LiDAR to image conversion of road data.•Implementation of Generalized Hough Transform to detect zebra crossings.</description><identifier>ISSN: 0030-3992</identifier><identifier>EISSN: 1879-2545</identifier><identifier>DOI: 10.1016/j.optlastec.2015.01.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Automation ; Geographic information system ; Lasers ; Lidar ; Mathematical analysis ; Mobile LiDAR ; Roads ; Three dimensional models ; Urban mapping</subject><ispartof>Optics and laser technology, 2015-07, Vol.70, p.63-70</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-28bbe5c004e4a0afa6307519dccb3549afca65272696fc25cd4e8e0a14c83fd73</citedby><cites>FETCH-LOGICAL-c348t-28bbe5c004e4a0afa6307519dccb3549afca65272696fc25cd4e8e0a14c83fd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0030399215000237$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Riveiro, B.</creatorcontrib><creatorcontrib>González-Jorge, H.</creatorcontrib><creatorcontrib>Martínez-Sánchez, J.</creatorcontrib><creatorcontrib>Díaz-Vilariño, L.</creatorcontrib><creatorcontrib>Arias, P.</creatorcontrib><title>Automatic detection of zebra crossings from mobile LiDAR data</title><title>Optics and laser technology</title><description>An algorithm for the automatic detection of zebra crossings from mobile LiDAR data is developed and tested to be applied for road management purposes. The algorithm consists of several subsequent processes starting with road segmentation by performing a curvature analysis for each laser cycle. Then, intensity images are created from the point cloud using rasterization techniques, in order to detect zebra crossing using the Standard Hough Transform and logical constrains. To optimize the results, image processing algorithms are applied to the intensity images from the point cloud. These algorithms include binarization to separate the painting area from the rest of the pavement, median filtering to avoid noisy points, and mathematical morphology to fill the gaps between the pixels in the border of white marks. Once the road marking is detected, its position is calculated. This information is valuable for inventorying purposes of road managers that use Geographic Information Systems.
The performance of the algorithm has been evaluated over several mobile LiDAR strips accounting for a total of 30 zebra crossings. That test showed a completeness of 83%. Non-detected marks mainly come from painting deterioration of the zebra crossing or by occlusions in the point cloud produced by other vehicles on the road.
•Road segmentation using curvature analysis.•LiDAR to image conversion of road data.•Implementation of Generalized Hough Transform to detect zebra crossings.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Geographic information system</subject><subject>Lasers</subject><subject>Lidar</subject><subject>Mathematical analysis</subject><subject>Mobile LiDAR</subject><subject>Roads</subject><subject>Three dimensional models</subject><subject>Urban mapping</subject><issn>0030-3992</issn><issn>1879-2545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOD5-g1m6ac2jadqFizI-YUAQXYc0vZEMbTMmGUF_vRlH3AoH7uacc-_9ELqgpKSE1lfr0m_SqGMCUzJCRUloFj1AC9rItmCiEodoQQgnBW9bdoxOYlwTQqpa8AW67rbJTzo5gwfIFcn5GXuLv6APGpvgY3TzW8Q2-AlPvncj4JW76Z7xoJM-Q0dWjxHOf-cper27fVk-FKun-8dltyoMr5pUsKbvQZi8EypNtNU1J1LQdjCm56JqtTW6Fkyyuq2tYcIMFTRANK1Mw-0g-Sm63Pdugn_fQkxqctHAOOoZ_DYqKiVhDZU1z1a5t_7cHsCqTXCTDp-KErUDptbqD5jaAVOEZtGc7PZJyJ98OAgqGgezgcGFDEYN3v3b8Q00gHiG</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Riveiro, B.</creator><creator>González-Jorge, H.</creator><creator>Martínez-Sánchez, J.</creator><creator>Díaz-Vilariño, L.</creator><creator>Arias, P.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150701</creationdate><title>Automatic detection of zebra crossings from mobile LiDAR data</title><author>Riveiro, B. ; González-Jorge, H. ; Martínez-Sánchez, J. ; Díaz-Vilariño, L. ; Arias, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-28bbe5c004e4a0afa6307519dccb3549afca65272696fc25cd4e8e0a14c83fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Geographic information system</topic><topic>Lasers</topic><topic>Lidar</topic><topic>Mathematical analysis</topic><topic>Mobile LiDAR</topic><topic>Roads</topic><topic>Three dimensional models</topic><topic>Urban mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riveiro, B.</creatorcontrib><creatorcontrib>González-Jorge, H.</creatorcontrib><creatorcontrib>Martínez-Sánchez, J.</creatorcontrib><creatorcontrib>Díaz-Vilariño, L.</creatorcontrib><creatorcontrib>Arias, P.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and laser technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riveiro, B.</au><au>González-Jorge, H.</au><au>Martínez-Sánchez, J.</au><au>Díaz-Vilariño, L.</au><au>Arias, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic detection of zebra crossings from mobile LiDAR data</atitle><jtitle>Optics and laser technology</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>70</volume><spage>63</spage><epage>70</epage><pages>63-70</pages><issn>0030-3992</issn><eissn>1879-2545</eissn><abstract>An algorithm for the automatic detection of zebra crossings from mobile LiDAR data is developed and tested to be applied for road management purposes. The algorithm consists of several subsequent processes starting with road segmentation by performing a curvature analysis for each laser cycle. Then, intensity images are created from the point cloud using rasterization techniques, in order to detect zebra crossing using the Standard Hough Transform and logical constrains. To optimize the results, image processing algorithms are applied to the intensity images from the point cloud. These algorithms include binarization to separate the painting area from the rest of the pavement, median filtering to avoid noisy points, and mathematical morphology to fill the gaps between the pixels in the border of white marks. Once the road marking is detected, its position is calculated. This information is valuable for inventorying purposes of road managers that use Geographic Information Systems.
The performance of the algorithm has been evaluated over several mobile LiDAR strips accounting for a total of 30 zebra crossings. That test showed a completeness of 83%. Non-detected marks mainly come from painting deterioration of the zebra crossing or by occlusions in the point cloud produced by other vehicles on the road.
•Road segmentation using curvature analysis.•LiDAR to image conversion of road data.•Implementation of Generalized Hough Transform to detect zebra crossings.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.optlastec.2015.01.011</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-3992 |
ispartof | Optics and laser technology, 2015-07, Vol.70, p.63-70 |
issn | 0030-3992 1879-2545 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770281763 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Automation Geographic information system Lasers Lidar Mathematical analysis Mobile LiDAR Roads Three dimensional models Urban mapping |
title | Automatic detection of zebra crossings from mobile LiDAR data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20detection%20of%20zebra%20crossings%20from%20mobile%20LiDAR%20data&rft.jtitle=Optics%20and%20laser%20technology&rft.au=Riveiro,%20B.&rft.date=2015-07-01&rft.volume=70&rft.spage=63&rft.epage=70&rft.pages=63-70&rft.issn=0030-3992&rft.eissn=1879-2545&rft_id=info:doi/10.1016/j.optlastec.2015.01.011&rft_dat=%3Cproquest_cross%3E1770281763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770281763&rft_id=info:pmid/&rft_els_id=S0030399215000237&rfr_iscdi=true |