Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder – The peacock’s tail coverts shaft and its components
[Display omitted] Feather shaft, which is primarily featured by a cylinder filled with foam, possesses a unique combination of mechanical robustness and flexibility with a low density through natural evolution and selection. Here the hierarchical structures of peacock’s tail coverts shaft and its co...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2015-04, Vol.17, p.137-151 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 151 |
---|---|
container_issue | |
container_start_page | 137 |
container_title | Acta biomaterialia |
container_volume | 17 |
creator | Liu, Z.Q. Jiao, D. Meyers, M.A. Zhang, Z.F. |
description | [Display omitted]
Feather shaft, which is primarily featured by a cylinder filled with foam, possesses a unique combination of mechanical robustness and flexibility with a low density through natural evolution and selection. Here the hierarchical structures of peacock’s tail coverts shaft and its components are systematically characterized from millimeter to nanometer length scales. The variations in constituent and geometry along the length are examined. The mechanical properties under both dry and wet conditions are investigated. The deformation and failure behaviors and involved strengthening, stiffening and toughening mechanisms are analyzed qualitatively and quantitatively and correlated to the structures. It is revealed that the properties of feather shaft and its components have been optimized through various structural adaptations. Synergetic strengthening and stiffening effects can be achieved in overall rachis owing to increased failure resistance. This study is expected to aid in deeper understandings on the ingenious structure–property design strategies developed by nature, and accordingly, provide useful inspiration for the development of high-performance synthetic foams and foam-filled materials. |
doi_str_mv | 10.1016/j.actbio.2015.01.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770280263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706115000458</els_id><sourcerecordid>1732816707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-8cfa4d13fc81514d61c38f3698fb63aa3ff7f9abbac189fe5a082f0eaed258253</originalsourceid><addsrcrecordid>eNqNkc1u1DAQxyMEoqXwBgj5yCXBH4njvSChii-pEgfK2XIm464XJw62U7S3vgPiwOv1SfCyhSNw8djSb-Yvz6-qnjLaMMrki11jIA8uNJyyrqGsoaK7V50y1au676S6X-59y-ueSnZSPUppR6lQjKuH1QnvpORMytPq-8ccV8hrRGLmkUwIWzM7MJ4sMSwYs8NEgiWzKYzxfk8CwBqjm6-Id1fb_BUPJ7HBTLV13uNIYO_dPGIktzffyOUWyYIGAny-vfmRSDbOEwjXZXQiaWts_hXsygvCtIQZ55weVw-s8Qmf3NWz6tOb15fn7-qLD2_fn7-6qKHlKtcKrGlHJiwo1rF2lAyEskJulB2kMEZY29uNGQYDTG0sdoYqbikaHHmneCfOqufHueWzX1ZMWU8uAXpvZgxr0qzvKVeUS_EfqOCKyZ72_0al7EW7aZUsaHtEIYaUIlq9RDeZuNeM6oNmvdNHzfqgWVOmi-bS9uwuYR0mHP80_fZagJdHAMv2rh1GncDhDDi6iJD1GNzfE34CUXPADg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1667349486</pqid></control><display><type>article</type><title>Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder – The peacock’s tail coverts shaft and its components</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Liu, Z.Q. ; Jiao, D. ; Meyers, M.A. ; Zhang, Z.F.</creator><creatorcontrib>Liu, Z.Q. ; Jiao, D. ; Meyers, M.A. ; Zhang, Z.F.</creatorcontrib><description>[Display omitted]
Feather shaft, which is primarily featured by a cylinder filled with foam, possesses a unique combination of mechanical robustness and flexibility with a low density through natural evolution and selection. Here the hierarchical structures of peacock’s tail coverts shaft and its components are systematically characterized from millimeter to nanometer length scales. The variations in constituent and geometry along the length are examined. The mechanical properties under both dry and wet conditions are investigated. The deformation and failure behaviors and involved strengthening, stiffening and toughening mechanisms are analyzed qualitatively and quantitatively and correlated to the structures. It is revealed that the properties of feather shaft and its components have been optimized through various structural adaptations. Synergetic strengthening and stiffening effects can be achieved in overall rachis owing to increased failure resistance. This study is expected to aid in deeper understandings on the ingenious structure–property design strategies developed by nature, and accordingly, provide useful inspiration for the development of high-performance synthetic foams and foam-filled materials.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2015.01.035</identifier><identifier>PMID: 25662166</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biocompatible Materials ; Biological materials ; Biomechanical Phenomena ; Buckling ; Compressive Strength ; Cylinders ; Density ; Elasticity ; Feather shaft ; Feathers ; Feathers - physiology ; Feathers - ultrastructure ; Foams ; Galliformes ; Hierarchical structure ; Male ; Materials Testing ; Mechanical properties ; Nanostructure ; Porosity ; Stiffening ; Strengthening ; Stress, Mechanical ; Tensile Strength</subject><ispartof>Acta biomaterialia, 2015-04, Vol.17, p.137-151</ispartof><rights>2015 Acta Materialia Inc.</rights><rights>Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-8cfa4d13fc81514d61c38f3698fb63aa3ff7f9abbac189fe5a082f0eaed258253</citedby><cites>FETCH-LOGICAL-c428t-8cfa4d13fc81514d61c38f3698fb63aa3ff7f9abbac189fe5a082f0eaed258253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706115000458$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25662166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Z.Q.</creatorcontrib><creatorcontrib>Jiao, D.</creatorcontrib><creatorcontrib>Meyers, M.A.</creatorcontrib><creatorcontrib>Zhang, Z.F.</creatorcontrib><title>Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder – The peacock’s tail coverts shaft and its components</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted]
Feather shaft, which is primarily featured by a cylinder filled with foam, possesses a unique combination of mechanical robustness and flexibility with a low density through natural evolution and selection. Here the hierarchical structures of peacock’s tail coverts shaft and its components are systematically characterized from millimeter to nanometer length scales. The variations in constituent and geometry along the length are examined. The mechanical properties under both dry and wet conditions are investigated. The deformation and failure behaviors and involved strengthening, stiffening and toughening mechanisms are analyzed qualitatively and quantitatively and correlated to the structures. It is revealed that the properties of feather shaft and its components have been optimized through various structural adaptations. Synergetic strengthening and stiffening effects can be achieved in overall rachis owing to increased failure resistance. This study is expected to aid in deeper understandings on the ingenious structure–property design strategies developed by nature, and accordingly, provide useful inspiration for the development of high-performance synthetic foams and foam-filled materials.</description><subject>Animals</subject><subject>Biocompatible Materials</subject><subject>Biological materials</subject><subject>Biomechanical Phenomena</subject><subject>Buckling</subject><subject>Compressive Strength</subject><subject>Cylinders</subject><subject>Density</subject><subject>Elasticity</subject><subject>Feather shaft</subject><subject>Feathers</subject><subject>Feathers - physiology</subject><subject>Feathers - ultrastructure</subject><subject>Foams</subject><subject>Galliformes</subject><subject>Hierarchical structure</subject><subject>Male</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Nanostructure</subject><subject>Porosity</subject><subject>Stiffening</subject><subject>Strengthening</subject><subject>Stress, Mechanical</subject><subject>Tensile Strength</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAQxyMEoqXwBgj5yCXBH4njvSChii-pEgfK2XIm464XJw62U7S3vgPiwOv1SfCyhSNw8djSb-Yvz6-qnjLaMMrki11jIA8uNJyyrqGsoaK7V50y1au676S6X-59y-ueSnZSPUppR6lQjKuH1QnvpORMytPq-8ccV8hrRGLmkUwIWzM7MJ4sMSwYs8NEgiWzKYzxfk8CwBqjm6-Id1fb_BUPJ7HBTLV13uNIYO_dPGIktzffyOUWyYIGAny-vfmRSDbOEwjXZXQiaWts_hXsygvCtIQZ55weVw-s8Qmf3NWz6tOb15fn7-qLD2_fn7-6qKHlKtcKrGlHJiwo1rF2lAyEskJulB2kMEZY29uNGQYDTG0sdoYqbikaHHmneCfOqufHueWzX1ZMWU8uAXpvZgxr0qzvKVeUS_EfqOCKyZ72_0al7EW7aZUsaHtEIYaUIlq9RDeZuNeM6oNmvdNHzfqgWVOmi-bS9uwuYR0mHP80_fZagJdHAMv2rh1GncDhDDi6iJD1GNzfE34CUXPADg</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Liu, Z.Q.</creator><creator>Jiao, D.</creator><creator>Meyers, M.A.</creator><creator>Zhang, Z.F.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201504</creationdate><title>Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder – The peacock’s tail coverts shaft and its components</title><author>Liu, Z.Q. ; Jiao, D. ; Meyers, M.A. ; Zhang, Z.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-8cfa4d13fc81514d61c38f3698fb63aa3ff7f9abbac189fe5a082f0eaed258253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biocompatible Materials</topic><topic>Biological materials</topic><topic>Biomechanical Phenomena</topic><topic>Buckling</topic><topic>Compressive Strength</topic><topic>Cylinders</topic><topic>Density</topic><topic>Elasticity</topic><topic>Feather shaft</topic><topic>Feathers</topic><topic>Feathers - physiology</topic><topic>Feathers - ultrastructure</topic><topic>Foams</topic><topic>Galliformes</topic><topic>Hierarchical structure</topic><topic>Male</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Nanostructure</topic><topic>Porosity</topic><topic>Stiffening</topic><topic>Strengthening</topic><topic>Stress, Mechanical</topic><topic>Tensile Strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Z.Q.</creatorcontrib><creatorcontrib>Jiao, D.</creatorcontrib><creatorcontrib>Meyers, M.A.</creatorcontrib><creatorcontrib>Zhang, Z.F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Z.Q.</au><au>Jiao, D.</au><au>Meyers, M.A.</au><au>Zhang, Z.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder – The peacock’s tail coverts shaft and its components</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2015-04</date><risdate>2015</risdate><volume>17</volume><spage>137</spage><epage>151</epage><pages>137-151</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted]
Feather shaft, which is primarily featured by a cylinder filled with foam, possesses a unique combination of mechanical robustness and flexibility with a low density through natural evolution and selection. Here the hierarchical structures of peacock’s tail coverts shaft and its components are systematically characterized from millimeter to nanometer length scales. The variations in constituent and geometry along the length are examined. The mechanical properties under both dry and wet conditions are investigated. The deformation and failure behaviors and involved strengthening, stiffening and toughening mechanisms are analyzed qualitatively and quantitatively and correlated to the structures. It is revealed that the properties of feather shaft and its components have been optimized through various structural adaptations. Synergetic strengthening and stiffening effects can be achieved in overall rachis owing to increased failure resistance. This study is expected to aid in deeper understandings on the ingenious structure–property design strategies developed by nature, and accordingly, provide useful inspiration for the development of high-performance synthetic foams and foam-filled materials.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25662166</pmid><doi>10.1016/j.actbio.2015.01.035</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2015-04, Vol.17, p.137-151 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770280263 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Biocompatible Materials Biological materials Biomechanical Phenomena Buckling Compressive Strength Cylinders Density Elasticity Feather shaft Feathers Feathers - physiology Feathers - ultrastructure Foams Galliformes Hierarchical structure Male Materials Testing Mechanical properties Nanostructure Porosity Stiffening Strengthening Stress, Mechanical Tensile Strength |
title | Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder – The peacock’s tail coverts shaft and its components |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20mechanical%20properties%20of%20naturally%20occurring%20lightweight%20foam-filled%20cylinder%20%E2%80%93%20The%20peacock%E2%80%99s%20tail%20coverts%20shaft%20and%20its%20components&rft.jtitle=Acta%20biomaterialia&rft.au=Liu,%20Z.Q.&rft.date=2015-04&rft.volume=17&rft.spage=137&rft.epage=151&rft.pages=137-151&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2015.01.035&rft_dat=%3Cproquest_cross%3E1732816707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1667349486&rft_id=info:pmid/25662166&rft_els_id=S1742706115000458&rfr_iscdi=true |