Variation of fracture mode in micro-scale laser shock punching

Micro-scale laser shock punching is a high strain rate micro-forming method which uses the high-amplitude shock wave pressure induced by pulsed laser irradiation. The response of brass and pure titanium foils under the different ratio of laser beam diameter (d) to die hole diameter (D) in micro-scal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics and laser technology 2015-09, Vol.72, p.25-32
Hauptverfasser: Zheng, Chao, Ji, Zhong, Song, Libin, Fu, Jie, Zhu, Yunhu, Zhang, Jianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue
container_start_page 25
container_title Optics and laser technology
container_volume 72
creator Zheng, Chao
Ji, Zhong
Song, Libin
Fu, Jie
Zhu, Yunhu
Zhang, Jianhua
description Micro-scale laser shock punching is a high strain rate micro-forming method which uses the high-amplitude shock wave pressure induced by pulsed laser irradiation. The response of brass and pure titanium foils under the different ratio of laser beam diameter (d) to die hole diameter (D) in micro-scale laser shock punching was investigated experimentally and numerically. The typical fracture surface morphologies were observed using scanning electron microscope. Numerical simulations were conducted to predict the stress state of the workpiece before and after fracture. The influence of the ratio d/D on dynamic deformation and fracture of metal foils was characterized. The results demonstrate that both the crack locations and fracture surface morphologies of metal foils are strongly related to the ratio d/D. The fracture mode varies from a shear fracture mode to a mixed fracture mode, then to a tensile fracture mode as the ratio decreases. The stress state under the different ratio is discussed in detail and believed to be responsible for the variation. •Effect of the ratio of beam diameter (d) to die hole diameter (D) is studied.•The fracture mode of metal foils varies as the ratio d/D changes.•The crack location of metal foils is strongly related to the ratio d/D.•The stress state under the different ratios is simulated and discussed.
doi_str_mv 10.1016/j.optlastec.2015.03.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770278514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030399215000717</els_id><sourcerecordid>1770278514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-2fb5b9f3c251b42c3b09e27c818124eab7924de2da2853484718c62164df88a73</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEuXxG_CRS8L6kdi5IFUVL6kSF-BqOc6GuiRxsRMk_j2pirhymsvM7M5HyBWDnAErb7Z52I2dTSO6nAMrchA5QHVEFkyrKuOFLI7JAkBAJqqKn5KzlLYAIMtCLMjtm43ejj4MNLS0jdaNU0TahwapH2jvXQxZcrZDOt_ASNMmuA-6mwa38cP7BTlpbZfw8lfPyev93cvqMVs_PzytluvMSSbHjLd1UVetcLxgteRO1FAhV04zzbhEW6uKywZ5Y7kuhNRSMe1KzkrZtFpbJc7J9aF3F8PnhGk0vU8Ou84OGKZkmFLAlS6YnK3qYJ0_Tylia3bR9zZ-GwZmT8xszR8xsydmQJiZ2JxcHpI4L_nyGE1yHgeHjY_oRtME_2_HD1RheEM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770278514</pqid></control><display><type>article</type><title>Variation of fracture mode in micro-scale laser shock punching</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zheng, Chao ; Ji, Zhong ; Song, Libin ; Fu, Jie ; Zhu, Yunhu ; Zhang, Jianhua</creator><creatorcontrib>Zheng, Chao ; Ji, Zhong ; Song, Libin ; Fu, Jie ; Zhu, Yunhu ; Zhang, Jianhua</creatorcontrib><description>Micro-scale laser shock punching is a high strain rate micro-forming method which uses the high-amplitude shock wave pressure induced by pulsed laser irradiation. The response of brass and pure titanium foils under the different ratio of laser beam diameter (d) to die hole diameter (D) in micro-scale laser shock punching was investigated experimentally and numerically. The typical fracture surface morphologies were observed using scanning electron microscope. Numerical simulations were conducted to predict the stress state of the workpiece before and after fracture. The influence of the ratio d/D on dynamic deformation and fracture of metal foils was characterized. The results demonstrate that both the crack locations and fracture surface morphologies of metal foils are strongly related to the ratio d/D. The fracture mode varies from a shear fracture mode to a mixed fracture mode, then to a tensile fracture mode as the ratio decreases. The stress state under the different ratio is discussed in detail and believed to be responsible for the variation. •Effect of the ratio of beam diameter (d) to die hole diameter (D) is studied.•The fracture mode of metal foils varies as the ratio d/D changes.•The crack location of metal foils is strongly related to the ratio d/D.•The stress state under the different ratios is simulated and discussed.</description><identifier>ISSN: 0030-3992</identifier><identifier>EISSN: 1879-2545</identifier><identifier>DOI: 10.1016/j.optlastec.2015.03.009</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Fracture mechanics ; Fracture mode ; Fracture surfaces ; Laser shock ; Mathematical models ; Metal foils ; Micro-punching ; Morphology ; Punching ; Scanning electron microscopy ; Stresses</subject><ispartof>Optics and laser technology, 2015-09, Vol.72, p.25-32</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-2fb5b9f3c251b42c3b09e27c818124eab7924de2da2853484718c62164df88a73</citedby><cites>FETCH-LOGICAL-c414t-2fb5b9f3c251b42c3b09e27c818124eab7924de2da2853484718c62164df88a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optlastec.2015.03.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Zheng, Chao</creatorcontrib><creatorcontrib>Ji, Zhong</creatorcontrib><creatorcontrib>Song, Libin</creatorcontrib><creatorcontrib>Fu, Jie</creatorcontrib><creatorcontrib>Zhu, Yunhu</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><title>Variation of fracture mode in micro-scale laser shock punching</title><title>Optics and laser technology</title><description>Micro-scale laser shock punching is a high strain rate micro-forming method which uses the high-amplitude shock wave pressure induced by pulsed laser irradiation. The response of brass and pure titanium foils under the different ratio of laser beam diameter (d) to die hole diameter (D) in micro-scale laser shock punching was investigated experimentally and numerically. The typical fracture surface morphologies were observed using scanning electron microscope. Numerical simulations were conducted to predict the stress state of the workpiece before and after fracture. The influence of the ratio d/D on dynamic deformation and fracture of metal foils was characterized. The results demonstrate that both the crack locations and fracture surface morphologies of metal foils are strongly related to the ratio d/D. The fracture mode varies from a shear fracture mode to a mixed fracture mode, then to a tensile fracture mode as the ratio decreases. The stress state under the different ratio is discussed in detail and believed to be responsible for the variation. •Effect of the ratio of beam diameter (d) to die hole diameter (D) is studied.•The fracture mode of metal foils varies as the ratio d/D changes.•The crack location of metal foils is strongly related to the ratio d/D.•The stress state under the different ratios is simulated and discussed.</description><subject>Fracture mechanics</subject><subject>Fracture mode</subject><subject>Fracture surfaces</subject><subject>Laser shock</subject><subject>Mathematical models</subject><subject>Metal foils</subject><subject>Micro-punching</subject><subject>Morphology</subject><subject>Punching</subject><subject>Scanning electron microscopy</subject><subject>Stresses</subject><issn>0030-3992</issn><issn>1879-2545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEuXxG_CRS8L6kdi5IFUVL6kSF-BqOc6GuiRxsRMk_j2pirhymsvM7M5HyBWDnAErb7Z52I2dTSO6nAMrchA5QHVEFkyrKuOFLI7JAkBAJqqKn5KzlLYAIMtCLMjtm43ejj4MNLS0jdaNU0TahwapH2jvXQxZcrZDOt_ASNMmuA-6mwa38cP7BTlpbZfw8lfPyev93cvqMVs_PzytluvMSSbHjLd1UVetcLxgteRO1FAhV04zzbhEW6uKywZ5Y7kuhNRSMe1KzkrZtFpbJc7J9aF3F8PnhGk0vU8Ou84OGKZkmFLAlS6YnK3qYJ0_Tylia3bR9zZ-GwZmT8xszR8xsydmQJiZ2JxcHpI4L_nyGE1yHgeHjY_oRtME_2_HD1RheEM</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Zheng, Chao</creator><creator>Ji, Zhong</creator><creator>Song, Libin</creator><creator>Fu, Jie</creator><creator>Zhu, Yunhu</creator><creator>Zhang, Jianhua</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201509</creationdate><title>Variation of fracture mode in micro-scale laser shock punching</title><author>Zheng, Chao ; Ji, Zhong ; Song, Libin ; Fu, Jie ; Zhu, Yunhu ; Zhang, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-2fb5b9f3c251b42c3b09e27c818124eab7924de2da2853484718c62164df88a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Fracture mechanics</topic><topic>Fracture mode</topic><topic>Fracture surfaces</topic><topic>Laser shock</topic><topic>Mathematical models</topic><topic>Metal foils</topic><topic>Micro-punching</topic><topic>Morphology</topic><topic>Punching</topic><topic>Scanning electron microscopy</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Chao</creatorcontrib><creatorcontrib>Ji, Zhong</creatorcontrib><creatorcontrib>Song, Libin</creatorcontrib><creatorcontrib>Fu, Jie</creatorcontrib><creatorcontrib>Zhu, Yunhu</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and laser technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Chao</au><au>Ji, Zhong</au><au>Song, Libin</au><au>Fu, Jie</au><au>Zhu, Yunhu</au><au>Zhang, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variation of fracture mode in micro-scale laser shock punching</atitle><jtitle>Optics and laser technology</jtitle><date>2015-09</date><risdate>2015</risdate><volume>72</volume><spage>25</spage><epage>32</epage><pages>25-32</pages><issn>0030-3992</issn><eissn>1879-2545</eissn><abstract>Micro-scale laser shock punching is a high strain rate micro-forming method which uses the high-amplitude shock wave pressure induced by pulsed laser irradiation. The response of brass and pure titanium foils under the different ratio of laser beam diameter (d) to die hole diameter (D) in micro-scale laser shock punching was investigated experimentally and numerically. The typical fracture surface morphologies were observed using scanning electron microscope. Numerical simulations were conducted to predict the stress state of the workpiece before and after fracture. The influence of the ratio d/D on dynamic deformation and fracture of metal foils was characterized. The results demonstrate that both the crack locations and fracture surface morphologies of metal foils are strongly related to the ratio d/D. The fracture mode varies from a shear fracture mode to a mixed fracture mode, then to a tensile fracture mode as the ratio decreases. The stress state under the different ratio is discussed in detail and believed to be responsible for the variation. •Effect of the ratio of beam diameter (d) to die hole diameter (D) is studied.•The fracture mode of metal foils varies as the ratio d/D changes.•The crack location of metal foils is strongly related to the ratio d/D.•The stress state under the different ratios is simulated and discussed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.optlastec.2015.03.009</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-3992
ispartof Optics and laser technology, 2015-09, Vol.72, p.25-32
issn 0030-3992
1879-2545
language eng
recordid cdi_proquest_miscellaneous_1770278514
source ScienceDirect Journals (5 years ago - present)
subjects Fracture mechanics
Fracture mode
Fracture surfaces
Laser shock
Mathematical models
Metal foils
Micro-punching
Morphology
Punching
Scanning electron microscopy
Stresses
title Variation of fracture mode in micro-scale laser shock punching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variation%20of%20fracture%20mode%20in%20micro-scale%20laser%20shock%20punching&rft.jtitle=Optics%20and%20laser%20technology&rft.au=Zheng,%20Chao&rft.date=2015-09&rft.volume=72&rft.spage=25&rft.epage=32&rft.pages=25-32&rft.issn=0030-3992&rft.eissn=1879-2545&rft_id=info:doi/10.1016/j.optlastec.2015.03.009&rft_dat=%3Cproquest_cross%3E1770278514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770278514&rft_id=info:pmid/&rft_els_id=S0030399215000717&rfr_iscdi=true