Exploiting non-constant safe memory in resilient algorithms and data structures
We extend the Faulty RAM model by Finocchi and Italiano (2008) by adding a safe memory of arbitrary size S, and we then derive tradeoffs between the performance of resilient algorithmic techniques and the size of the safe memory. Let δ and α denote, respectively, the maximum amount of faults which c...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2015-06, Vol.583, p.86-97 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 97 |
---|---|
container_issue | |
container_start_page | 86 |
container_title | Theoretical computer science |
container_volume | 583 |
creator | De Stefani, Lorenzo Silvestri, Francesco |
description | We extend the Faulty RAM model by Finocchi and Italiano (2008) by adding a safe memory of arbitrary size S, and we then derive tradeoffs between the performance of resilient algorithmic techniques and the size of the safe memory. Let δ and α denote, respectively, the maximum amount of faults which can happen during the execution of an algorithm and the actual number of occurred faults, with α≤δ. We propose a resilient algorithm for sorting n entries which requires O(nlogn+α(δ/S+logS)) time and uses Θ(S) safe memory words. Our algorithm outperforms previous resilient sorting algorithms which do not exploit the available safe memory and require O(nlogn+αδ) time. Finally, we exploit our sorting algorithm for deriving a resilient priority queue. Our implementation uses Θ(S) safe memory words and Θ(n) faulty memory words for storing n keys, and requires O(logn+δ/S) amortized time for each insert and deletemin operation. Our resilient priority queue improves the O(logn+δ) amortized time required by the state of the art.
•We study tradeoffs between algorithmic resiliency and hardware resiliency.•We extend the Faulty RAM (FRAM) model by adding a safe memory S which is immune to corruptions.•We propose a resilient sorting algorithm requiring O(nlogn+α(δ/S+logS)) time.•We propose a resilient priority queue data structure requiring O(logn+δ/S) amortized time per operation. |
doi_str_mv | 10.1016/j.tcs.2015.04.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770278327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397515003096</els_id><sourcerecordid>1770278327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-ca6fbe3e532c2d046bed4dd8d7737b1743547b836c0c22aeabed60e1f60756d03</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxC0EEqXwAdgysiQ824ndiglV5Y9UqQvMlmO_FFdJXGwHwbfHVZl5yw1396T7EXJLoaJAxf2-SiZWDGhTQV0B8DMyowu5LBlb1udkBhzqki9lc0muYtxDvkaKGdmuvw-9d8mNu2L0Y2n8GJMeUxF1h8WAgw8_hRuLgNH1DrOh-50PLn0MsdCjLaxOuogpTCZNOXRNLjrdR7z50zl5f1q_rV7Kzfb5dfW4KQ2XPJVGi65Fjg1nhlmoRYu2tnZhpeSypbLmTS3bBRcGDGMadfYFIO0EyEZY4HNyd_p7CP5zwpjU4KLBvtcj-ikqKiUwueBM5ig9RU3wMQbs1CG4QYcfRUEd4am9yvDUEZ6CWmV4ufNw6mDe8OUwqGjyeoPWBTRJWe_-af8CrU149w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770278327</pqid></control><display><type>article</type><title>Exploiting non-constant safe memory in resilient algorithms and data structures</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>De Stefani, Lorenzo ; Silvestri, Francesco</creator><creatorcontrib>De Stefani, Lorenzo ; Silvestri, Francesco</creatorcontrib><description>We extend the Faulty RAM model by Finocchi and Italiano (2008) by adding a safe memory of arbitrary size S, and we then derive tradeoffs between the performance of resilient algorithmic techniques and the size of the safe memory. Let δ and α denote, respectively, the maximum amount of faults which can happen during the execution of an algorithm and the actual number of occurred faults, with α≤δ. We propose a resilient algorithm for sorting n entries which requires O(nlogn+α(δ/S+logS)) time and uses Θ(S) safe memory words. Our algorithm outperforms previous resilient sorting algorithms which do not exploit the available safe memory and require O(nlogn+αδ) time. Finally, we exploit our sorting algorithm for deriving a resilient priority queue. Our implementation uses Θ(S) safe memory words and Θ(n) faulty memory words for storing n keys, and requires O(logn+δ/S) amortized time for each insert and deletemin operation. Our resilient priority queue improves the O(logn+δ) amortized time required by the state of the art.
•We study tradeoffs between algorithmic resiliency and hardware resiliency.•We extend the Faulty RAM (FRAM) model by adding a safe memory S which is immune to corruptions.•We propose a resilient sorting algorithm requiring O(nlogn+α(δ/S+logS)) time.•We propose a resilient priority queue data structure requiring O(logn+δ/S) amortized time per operation.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2015.04.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Fault tolerance ; Faults ; Inserts ; Memory errors ; Priorities ; Priority queue ; Queues ; Random access memory ; Resilient algorithm ; Resilient data structure ; Sorting ; Sorting algorithms ; State of the art ; Tradeoffs</subject><ispartof>Theoretical computer science, 2015-06, Vol.583, p.86-97</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-ca6fbe3e532c2d046bed4dd8d7737b1743547b836c0c22aeabed60e1f60756d03</citedby><cites>FETCH-LOGICAL-c373t-ca6fbe3e532c2d046bed4dd8d7737b1743547b836c0c22aeabed60e1f60756d03</cites><orcidid>0000-0002-9077-9921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304397515003096$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>De Stefani, Lorenzo</creatorcontrib><creatorcontrib>Silvestri, Francesco</creatorcontrib><title>Exploiting non-constant safe memory in resilient algorithms and data structures</title><title>Theoretical computer science</title><description>We extend the Faulty RAM model by Finocchi and Italiano (2008) by adding a safe memory of arbitrary size S, and we then derive tradeoffs between the performance of resilient algorithmic techniques and the size of the safe memory. Let δ and α denote, respectively, the maximum amount of faults which can happen during the execution of an algorithm and the actual number of occurred faults, with α≤δ. We propose a resilient algorithm for sorting n entries which requires O(nlogn+α(δ/S+logS)) time and uses Θ(S) safe memory words. Our algorithm outperforms previous resilient sorting algorithms which do not exploit the available safe memory and require O(nlogn+αδ) time. Finally, we exploit our sorting algorithm for deriving a resilient priority queue. Our implementation uses Θ(S) safe memory words and Θ(n) faulty memory words for storing n keys, and requires O(logn+δ/S) amortized time for each insert and deletemin operation. Our resilient priority queue improves the O(logn+δ) amortized time required by the state of the art.
•We study tradeoffs between algorithmic resiliency and hardware resiliency.•We extend the Faulty RAM (FRAM) model by adding a safe memory S which is immune to corruptions.•We propose a resilient sorting algorithm requiring O(nlogn+α(δ/S+logS)) time.•We propose a resilient priority queue data structure requiring O(logn+δ/S) amortized time per operation.</description><subject>Algorithms</subject><subject>Fault tolerance</subject><subject>Faults</subject><subject>Inserts</subject><subject>Memory errors</subject><subject>Priorities</subject><subject>Priority queue</subject><subject>Queues</subject><subject>Random access memory</subject><subject>Resilient algorithm</subject><subject>Resilient data structure</subject><subject>Sorting</subject><subject>Sorting algorithms</subject><subject>State of the art</subject><subject>Tradeoffs</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAUxC0EEqXwAdgysiQ824ndiglV5Y9UqQvMlmO_FFdJXGwHwbfHVZl5yw1396T7EXJLoaJAxf2-SiZWDGhTQV0B8DMyowu5LBlb1udkBhzqki9lc0muYtxDvkaKGdmuvw-9d8mNu2L0Y2n8GJMeUxF1h8WAgw8_hRuLgNH1DrOh-50PLn0MsdCjLaxOuogpTCZNOXRNLjrdR7z50zl5f1q_rV7Kzfb5dfW4KQ2XPJVGi65Fjg1nhlmoRYu2tnZhpeSypbLmTS3bBRcGDGMadfYFIO0EyEZY4HNyd_p7CP5zwpjU4KLBvtcj-ikqKiUwueBM5ig9RU3wMQbs1CG4QYcfRUEd4am9yvDUEZ6CWmV4ufNw6mDe8OUwqGjyeoPWBTRJWe_-af8CrU149w</recordid><startdate>20150607</startdate><enddate>20150607</enddate><creator>De Stefani, Lorenzo</creator><creator>Silvestri, Francesco</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9077-9921</orcidid></search><sort><creationdate>20150607</creationdate><title>Exploiting non-constant safe memory in resilient algorithms and data structures</title><author>De Stefani, Lorenzo ; Silvestri, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-ca6fbe3e532c2d046bed4dd8d7737b1743547b836c0c22aeabed60e1f60756d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Fault tolerance</topic><topic>Faults</topic><topic>Inserts</topic><topic>Memory errors</topic><topic>Priorities</topic><topic>Priority queue</topic><topic>Queues</topic><topic>Random access memory</topic><topic>Resilient algorithm</topic><topic>Resilient data structure</topic><topic>Sorting</topic><topic>Sorting algorithms</topic><topic>State of the art</topic><topic>Tradeoffs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Stefani, Lorenzo</creatorcontrib><creatorcontrib>Silvestri, Francesco</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Stefani, Lorenzo</au><au>Silvestri, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting non-constant safe memory in resilient algorithms and data structures</atitle><jtitle>Theoretical computer science</jtitle><date>2015-06-07</date><risdate>2015</risdate><volume>583</volume><spage>86</spage><epage>97</epage><pages>86-97</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>We extend the Faulty RAM model by Finocchi and Italiano (2008) by adding a safe memory of arbitrary size S, and we then derive tradeoffs between the performance of resilient algorithmic techniques and the size of the safe memory. Let δ and α denote, respectively, the maximum amount of faults which can happen during the execution of an algorithm and the actual number of occurred faults, with α≤δ. We propose a resilient algorithm for sorting n entries which requires O(nlogn+α(δ/S+logS)) time and uses Θ(S) safe memory words. Our algorithm outperforms previous resilient sorting algorithms which do not exploit the available safe memory and require O(nlogn+αδ) time. Finally, we exploit our sorting algorithm for deriving a resilient priority queue. Our implementation uses Θ(S) safe memory words and Θ(n) faulty memory words for storing n keys, and requires O(logn+δ/S) amortized time for each insert and deletemin operation. Our resilient priority queue improves the O(logn+δ) amortized time required by the state of the art.
•We study tradeoffs between algorithmic resiliency and hardware resiliency.•We extend the Faulty RAM (FRAM) model by adding a safe memory S which is immune to corruptions.•We propose a resilient sorting algorithm requiring O(nlogn+α(δ/S+logS)) time.•We propose a resilient priority queue data structure requiring O(logn+δ/S) amortized time per operation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2015.04.003</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9077-9921</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2015-06, Vol.583, p.86-97 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770278327 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Fault tolerance Faults Inserts Memory errors Priorities Priority queue Queues Random access memory Resilient algorithm Resilient data structure Sorting Sorting algorithms State of the art Tradeoffs |
title | Exploiting non-constant safe memory in resilient algorithms and data structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20non-constant%20safe%20memory%20in%20resilient%20algorithms%20and%20data%20structures&rft.jtitle=Theoretical%20computer%20science&rft.au=De%20Stefani,%20Lorenzo&rft.date=2015-06-07&rft.volume=583&rft.spage=86&rft.epage=97&rft.pages=86-97&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2015.04.003&rft_dat=%3Cproquest_cross%3E1770278327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770278327&rft_id=info:pmid/&rft_els_id=S0304397515003096&rfr_iscdi=true |