Exploiting non-constant safe memory in resilient algorithms and data structures

We extend the Faulty RAM model by Finocchi and Italiano (2008) by adding a safe memory of arbitrary size S, and we then derive tradeoffs between the performance of resilient algorithmic techniques and the size of the safe memory. Let δ and α denote, respectively, the maximum amount of faults which c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2015-06, Vol.583, p.86-97
Hauptverfasser: De Stefani, Lorenzo, Silvestri, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue
container_start_page 86
container_title Theoretical computer science
container_volume 583
creator De Stefani, Lorenzo
Silvestri, Francesco
description We extend the Faulty RAM model by Finocchi and Italiano (2008) by adding a safe memory of arbitrary size S, and we then derive tradeoffs between the performance of resilient algorithmic techniques and the size of the safe memory. Let δ and α denote, respectively, the maximum amount of faults which can happen during the execution of an algorithm and the actual number of occurred faults, with α≤δ. We propose a resilient algorithm for sorting n entries which requires O(nlog⁡n+α(δ/S+log⁡S)) time and uses Θ(S) safe memory words. Our algorithm outperforms previous resilient sorting algorithms which do not exploit the available safe memory and require O(nlog⁡n+αδ) time. Finally, we exploit our sorting algorithm for deriving a resilient priority queue. Our implementation uses Θ(S) safe memory words and Θ(n) faulty memory words for storing n keys, and requires O(log⁡n+δ/S) amortized time for each insert and deletemin operation. Our resilient priority queue improves the O(log⁡n+δ) amortized time required by the state of the art. •We study tradeoffs between algorithmic resiliency and hardware resiliency.•We extend the Faulty RAM (FRAM) model by adding a safe memory S which is immune to corruptions.•We propose a resilient sorting algorithm requiring O(nlog⁡n+α(δ/S+log⁡S)) time.•We propose a resilient priority queue data structure requiring O(log⁡n+δ/S) amortized time per operation.
doi_str_mv 10.1016/j.tcs.2015.04.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770278327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397515003096</els_id><sourcerecordid>1770278327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-ca6fbe3e532c2d046bed4dd8d7737b1743547b836c0c22aeabed60e1f60756d03</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxC0EEqXwAdgysiQ824ndiglV5Y9UqQvMlmO_FFdJXGwHwbfHVZl5yw1396T7EXJLoaJAxf2-SiZWDGhTQV0B8DMyowu5LBlb1udkBhzqki9lc0muYtxDvkaKGdmuvw-9d8mNu2L0Y2n8GJMeUxF1h8WAgw8_hRuLgNH1DrOh-50PLn0MsdCjLaxOuogpTCZNOXRNLjrdR7z50zl5f1q_rV7Kzfb5dfW4KQ2XPJVGi65Fjg1nhlmoRYu2tnZhpeSypbLmTS3bBRcGDGMadfYFIO0EyEZY4HNyd_p7CP5zwpjU4KLBvtcj-ikqKiUwueBM5ig9RU3wMQbs1CG4QYcfRUEd4am9yvDUEZ6CWmV4ufNw6mDe8OUwqGjyeoPWBTRJWe_-af8CrU149w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770278327</pqid></control><display><type>article</type><title>Exploiting non-constant safe memory in resilient algorithms and data structures</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>De Stefani, Lorenzo ; Silvestri, Francesco</creator><creatorcontrib>De Stefani, Lorenzo ; Silvestri, Francesco</creatorcontrib><description>We extend the Faulty RAM model by Finocchi and Italiano (2008) by adding a safe memory of arbitrary size S, and we then derive tradeoffs between the performance of resilient algorithmic techniques and the size of the safe memory. Let δ and α denote, respectively, the maximum amount of faults which can happen during the execution of an algorithm and the actual number of occurred faults, with α≤δ. We propose a resilient algorithm for sorting n entries which requires O(nlog⁡n+α(δ/S+log⁡S)) time and uses Θ(S) safe memory words. Our algorithm outperforms previous resilient sorting algorithms which do not exploit the available safe memory and require O(nlog⁡n+αδ) time. Finally, we exploit our sorting algorithm for deriving a resilient priority queue. Our implementation uses Θ(S) safe memory words and Θ(n) faulty memory words for storing n keys, and requires O(log⁡n+δ/S) amortized time for each insert and deletemin operation. Our resilient priority queue improves the O(log⁡n+δ) amortized time required by the state of the art. •We study tradeoffs between algorithmic resiliency and hardware resiliency.•We extend the Faulty RAM (FRAM) model by adding a safe memory S which is immune to corruptions.•We propose a resilient sorting algorithm requiring O(nlog⁡n+α(δ/S+log⁡S)) time.•We propose a resilient priority queue data structure requiring O(log⁡n+δ/S) amortized time per operation.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2015.04.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Fault tolerance ; Faults ; Inserts ; Memory errors ; Priorities ; Priority queue ; Queues ; Random access memory ; Resilient algorithm ; Resilient data structure ; Sorting ; Sorting algorithms ; State of the art ; Tradeoffs</subject><ispartof>Theoretical computer science, 2015-06, Vol.583, p.86-97</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-ca6fbe3e532c2d046bed4dd8d7737b1743547b836c0c22aeabed60e1f60756d03</citedby><cites>FETCH-LOGICAL-c373t-ca6fbe3e532c2d046bed4dd8d7737b1743547b836c0c22aeabed60e1f60756d03</cites><orcidid>0000-0002-9077-9921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304397515003096$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>De Stefani, Lorenzo</creatorcontrib><creatorcontrib>Silvestri, Francesco</creatorcontrib><title>Exploiting non-constant safe memory in resilient algorithms and data structures</title><title>Theoretical computer science</title><description>We extend the Faulty RAM model by Finocchi and Italiano (2008) by adding a safe memory of arbitrary size S, and we then derive tradeoffs between the performance of resilient algorithmic techniques and the size of the safe memory. Let δ and α denote, respectively, the maximum amount of faults which can happen during the execution of an algorithm and the actual number of occurred faults, with α≤δ. We propose a resilient algorithm for sorting n entries which requires O(nlog⁡n+α(δ/S+log⁡S)) time and uses Θ(S) safe memory words. Our algorithm outperforms previous resilient sorting algorithms which do not exploit the available safe memory and require O(nlog⁡n+αδ) time. Finally, we exploit our sorting algorithm for deriving a resilient priority queue. Our implementation uses Θ(S) safe memory words and Θ(n) faulty memory words for storing n keys, and requires O(log⁡n+δ/S) amortized time for each insert and deletemin operation. Our resilient priority queue improves the O(log⁡n+δ) amortized time required by the state of the art. •We study tradeoffs between algorithmic resiliency and hardware resiliency.•We extend the Faulty RAM (FRAM) model by adding a safe memory S which is immune to corruptions.•We propose a resilient sorting algorithm requiring O(nlog⁡n+α(δ/S+log⁡S)) time.•We propose a resilient priority queue data structure requiring O(log⁡n+δ/S) amortized time per operation.</description><subject>Algorithms</subject><subject>Fault tolerance</subject><subject>Faults</subject><subject>Inserts</subject><subject>Memory errors</subject><subject>Priorities</subject><subject>Priority queue</subject><subject>Queues</subject><subject>Random access memory</subject><subject>Resilient algorithm</subject><subject>Resilient data structure</subject><subject>Sorting</subject><subject>Sorting algorithms</subject><subject>State of the art</subject><subject>Tradeoffs</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAUxC0EEqXwAdgysiQ824ndiglV5Y9UqQvMlmO_FFdJXGwHwbfHVZl5yw1396T7EXJLoaJAxf2-SiZWDGhTQV0B8DMyowu5LBlb1udkBhzqki9lc0muYtxDvkaKGdmuvw-9d8mNu2L0Y2n8GJMeUxF1h8WAgw8_hRuLgNH1DrOh-50PLn0MsdCjLaxOuogpTCZNOXRNLjrdR7z50zl5f1q_rV7Kzfb5dfW4KQ2XPJVGi65Fjg1nhlmoRYu2tnZhpeSypbLmTS3bBRcGDGMadfYFIO0EyEZY4HNyd_p7CP5zwpjU4KLBvtcj-ikqKiUwueBM5ig9RU3wMQbs1CG4QYcfRUEd4am9yvDUEZ6CWmV4ufNw6mDe8OUwqGjyeoPWBTRJWe_-af8CrU149w</recordid><startdate>20150607</startdate><enddate>20150607</enddate><creator>De Stefani, Lorenzo</creator><creator>Silvestri, Francesco</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9077-9921</orcidid></search><sort><creationdate>20150607</creationdate><title>Exploiting non-constant safe memory in resilient algorithms and data structures</title><author>De Stefani, Lorenzo ; Silvestri, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-ca6fbe3e532c2d046bed4dd8d7737b1743547b836c0c22aeabed60e1f60756d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Fault tolerance</topic><topic>Faults</topic><topic>Inserts</topic><topic>Memory errors</topic><topic>Priorities</topic><topic>Priority queue</topic><topic>Queues</topic><topic>Random access memory</topic><topic>Resilient algorithm</topic><topic>Resilient data structure</topic><topic>Sorting</topic><topic>Sorting algorithms</topic><topic>State of the art</topic><topic>Tradeoffs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Stefani, Lorenzo</creatorcontrib><creatorcontrib>Silvestri, Francesco</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Stefani, Lorenzo</au><au>Silvestri, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting non-constant safe memory in resilient algorithms and data structures</atitle><jtitle>Theoretical computer science</jtitle><date>2015-06-07</date><risdate>2015</risdate><volume>583</volume><spage>86</spage><epage>97</epage><pages>86-97</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>We extend the Faulty RAM model by Finocchi and Italiano (2008) by adding a safe memory of arbitrary size S, and we then derive tradeoffs between the performance of resilient algorithmic techniques and the size of the safe memory. Let δ and α denote, respectively, the maximum amount of faults which can happen during the execution of an algorithm and the actual number of occurred faults, with α≤δ. We propose a resilient algorithm for sorting n entries which requires O(nlog⁡n+α(δ/S+log⁡S)) time and uses Θ(S) safe memory words. Our algorithm outperforms previous resilient sorting algorithms which do not exploit the available safe memory and require O(nlog⁡n+αδ) time. Finally, we exploit our sorting algorithm for deriving a resilient priority queue. Our implementation uses Θ(S) safe memory words and Θ(n) faulty memory words for storing n keys, and requires O(log⁡n+δ/S) amortized time for each insert and deletemin operation. Our resilient priority queue improves the O(log⁡n+δ) amortized time required by the state of the art. •We study tradeoffs between algorithmic resiliency and hardware resiliency.•We extend the Faulty RAM (FRAM) model by adding a safe memory S which is immune to corruptions.•We propose a resilient sorting algorithm requiring O(nlog⁡n+α(δ/S+log⁡S)) time.•We propose a resilient priority queue data structure requiring O(log⁡n+δ/S) amortized time per operation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2015.04.003</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9077-9921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2015-06, Vol.583, p.86-97
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_1770278327
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Fault tolerance
Faults
Inserts
Memory errors
Priorities
Priority queue
Queues
Random access memory
Resilient algorithm
Resilient data structure
Sorting
Sorting algorithms
State of the art
Tradeoffs
title Exploiting non-constant safe memory in resilient algorithms and data structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20non-constant%20safe%20memory%20in%20resilient%20algorithms%20and%20data%20structures&rft.jtitle=Theoretical%20computer%20science&rft.au=De%20Stefani,%20Lorenzo&rft.date=2015-06-07&rft.volume=583&rft.spage=86&rft.epage=97&rft.pages=86-97&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2015.04.003&rft_dat=%3Cproquest_cross%3E1770278327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770278327&rft_id=info:pmid/&rft_els_id=S0304397515003096&rfr_iscdi=true