Matching preclusion and conditional matching preclusion problems for the folded Petersen cube

The matching preclusion number of an even graph is the minimum number of edges whose deletion results in a graph that has no perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. Recently, the conditional matching preclusion number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2015-04, Vol.576, p.30-44
Hauptverfasser: Cheng, Eddie, Connolly, Robert, Melekian, Christoper
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue
container_start_page 30
container_title Theoretical computer science
container_volume 576
creator Cheng, Eddie
Connolly, Robert
Melekian, Christoper
description The matching preclusion number of an even graph is the minimum number of edges whose deletion results in a graph that has no perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. Recently, the conditional matching preclusion number of an even graph was introduced to look for obstruction sets beyond those induced by a single vertex. It is defined to be the minimum number of edges whose deletion results in a graph with no isolated vertices and no perfect matchings. In this paper, we study this problem for the folded Petersen cube FPQ(n,k) via some matching preclusion and conditional matching preclusion results of the Cartesian products of graphs.
doi_str_mv 10.1016/j.tcs.2015.01.046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770277434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397515000936</els_id><sourcerecordid>1770277434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-cdbb5b0c3ecb4f4d4afded1661a5e2da83e6685eb813df46ab59d4c94dd21bb33</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouK7-AG85epkxmWSSGTzJ4gsUPehRQh49bpZ5rElG8N-bZT2KfSkaqoruD6FzSkpKqLjclMnGsiK0LgktCRcHaEEb2RZV1fJDtCCM8IK1sj5GJzFuSJ5aigV6f9LJrv34gbcBbD9HP41Yjw7baXQ-5U33ePjDsw2T6WGIuJsCTmvI2jtw-AUShAgjtrOBU3TU6T7C2a8u0dvtzevqvnh8vntYXT8WlkmWCuuMqQ2xDKzhHXdcd7mKCkF1DZXTDQMhmhpMQ5nruNCmbh23LXeuosYwtkQX-9581ecMManBRwt9r0eY5qiolKSSkjOerXRvtWGKMUCntsEPOnwrStQOpdqojFLtUCpCVUaZM1f7DOQfvjwEFa2H0YLzGUhSbvL_pH8ANC9_Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770277434</pqid></control><display><type>article</type><title>Matching preclusion and conditional matching preclusion problems for the folded Petersen cube</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cheng, Eddie ; Connolly, Robert ; Melekian, Christoper</creator><creatorcontrib>Cheng, Eddie ; Connolly, Robert ; Melekian, Christoper</creatorcontrib><description>The matching preclusion number of an even graph is the minimum number of edges whose deletion results in a graph that has no perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. Recently, the conditional matching preclusion number of an even graph was introduced to look for obstruction sets beyond those induced by a single vertex. It is defined to be the minimum number of edges whose deletion results in a graph with no isolated vertices and no perfect matchings. In this paper, we study this problem for the folded Petersen cube FPQ(n,k) via some matching preclusion and conditional matching preclusion results of the Cartesian products of graphs.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2015.01.046</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Conditional matching preclusion ; Cubes ; Deletion ; Folded Petersen cube ; Graph theory ; Graphs ; Interconnection ; Matching ; Matching preclusion ; Obstructions ; Optimization ; Perfect matching</subject><ispartof>Theoretical computer science, 2015-04, Vol.576, p.30-44</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-cdbb5b0c3ecb4f4d4afded1661a5e2da83e6685eb813df46ab59d4c94dd21bb33</citedby><cites>FETCH-LOGICAL-c373t-cdbb5b0c3ecb4f4d4afded1661a5e2da83e6685eb813df46ab59d4c94dd21bb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcs.2015.01.046$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Cheng, Eddie</creatorcontrib><creatorcontrib>Connolly, Robert</creatorcontrib><creatorcontrib>Melekian, Christoper</creatorcontrib><title>Matching preclusion and conditional matching preclusion problems for the folded Petersen cube</title><title>Theoretical computer science</title><description>The matching preclusion number of an even graph is the minimum number of edges whose deletion results in a graph that has no perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. Recently, the conditional matching preclusion number of an even graph was introduced to look for obstruction sets beyond those induced by a single vertex. It is defined to be the minimum number of edges whose deletion results in a graph with no isolated vertices and no perfect matchings. In this paper, we study this problem for the folded Petersen cube FPQ(n,k) via some matching preclusion and conditional matching preclusion results of the Cartesian products of graphs.</description><subject>Conditional matching preclusion</subject><subject>Cubes</subject><subject>Deletion</subject><subject>Folded Petersen cube</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Interconnection</subject><subject>Matching</subject><subject>Matching preclusion</subject><subject>Obstructions</subject><subject>Optimization</subject><subject>Perfect matching</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouK7-AG85epkxmWSSGTzJ4gsUPehRQh49bpZ5rElG8N-bZT2KfSkaqoruD6FzSkpKqLjclMnGsiK0LgktCRcHaEEb2RZV1fJDtCCM8IK1sj5GJzFuSJ5aigV6f9LJrv34gbcBbD9HP41Yjw7baXQ-5U33ePjDsw2T6WGIuJsCTmvI2jtw-AUShAgjtrOBU3TU6T7C2a8u0dvtzevqvnh8vntYXT8WlkmWCuuMqQ2xDKzhHXdcd7mKCkF1DZXTDQMhmhpMQ5nruNCmbh23LXeuosYwtkQX-9581ecMManBRwt9r0eY5qiolKSSkjOerXRvtWGKMUCntsEPOnwrStQOpdqojFLtUCpCVUaZM1f7DOQfvjwEFa2H0YLzGUhSbvL_pH8ANC9_Jw</recordid><startdate>20150420</startdate><enddate>20150420</enddate><creator>Cheng, Eddie</creator><creator>Connolly, Robert</creator><creator>Melekian, Christoper</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150420</creationdate><title>Matching preclusion and conditional matching preclusion problems for the folded Petersen cube</title><author>Cheng, Eddie ; Connolly, Robert ; Melekian, Christoper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-cdbb5b0c3ecb4f4d4afded1661a5e2da83e6685eb813df46ab59d4c94dd21bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Conditional matching preclusion</topic><topic>Cubes</topic><topic>Deletion</topic><topic>Folded Petersen cube</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Interconnection</topic><topic>Matching</topic><topic>Matching preclusion</topic><topic>Obstructions</topic><topic>Optimization</topic><topic>Perfect matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Eddie</creatorcontrib><creatorcontrib>Connolly, Robert</creatorcontrib><creatorcontrib>Melekian, Christoper</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Eddie</au><au>Connolly, Robert</au><au>Melekian, Christoper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matching preclusion and conditional matching preclusion problems for the folded Petersen cube</atitle><jtitle>Theoretical computer science</jtitle><date>2015-04-20</date><risdate>2015</risdate><volume>576</volume><spage>30</spage><epage>44</epage><pages>30-44</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>The matching preclusion number of an even graph is the minimum number of edges whose deletion results in a graph that has no perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. Recently, the conditional matching preclusion number of an even graph was introduced to look for obstruction sets beyond those induced by a single vertex. It is defined to be the minimum number of edges whose deletion results in a graph with no isolated vertices and no perfect matchings. In this paper, we study this problem for the folded Petersen cube FPQ(n,k) via some matching preclusion and conditional matching preclusion results of the Cartesian products of graphs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2015.01.046</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2015-04, Vol.576, p.30-44
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_1770277434
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Conditional matching preclusion
Cubes
Deletion
Folded Petersen cube
Graph theory
Graphs
Interconnection
Matching
Matching preclusion
Obstructions
Optimization
Perfect matching
title Matching preclusion and conditional matching preclusion problems for the folded Petersen cube
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matching%20preclusion%20and%20conditional%20matching%20preclusion%20problems%20for%20the%20folded%20Petersen%20cube&rft.jtitle=Theoretical%20computer%20science&rft.au=Cheng,%20Eddie&rft.date=2015-04-20&rft.volume=576&rft.spage=30&rft.epage=44&rft.pages=30-44&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2015.01.046&rft_dat=%3Cproquest_cross%3E1770277434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770277434&rft_id=info:pmid/&rft_els_id=S0304397515000936&rfr_iscdi=true