Matching preclusion and conditional matching preclusion problems for the folded Petersen cube
The matching preclusion number of an even graph is the minimum number of edges whose deletion results in a graph that has no perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. Recently, the conditional matching preclusion number of...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2015-04, Vol.576, p.30-44 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | |
container_start_page | 30 |
container_title | Theoretical computer science |
container_volume | 576 |
creator | Cheng, Eddie Connolly, Robert Melekian, Christoper |
description | The matching preclusion number of an even graph is the minimum number of edges whose deletion results in a graph that has no perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. Recently, the conditional matching preclusion number of an even graph was introduced to look for obstruction sets beyond those induced by a single vertex. It is defined to be the minimum number of edges whose deletion results in a graph with no isolated vertices and no perfect matchings. In this paper, we study this problem for the folded Petersen cube FPQ(n,k) via some matching preclusion and conditional matching preclusion results of the Cartesian products of graphs. |
doi_str_mv | 10.1016/j.tcs.2015.01.046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770277434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397515000936</els_id><sourcerecordid>1770277434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-cdbb5b0c3ecb4f4d4afded1661a5e2da83e6685eb813df46ab59d4c94dd21bb33</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouK7-AG85epkxmWSSGTzJ4gsUPehRQh49bpZ5rElG8N-bZT2KfSkaqoruD6FzSkpKqLjclMnGsiK0LgktCRcHaEEb2RZV1fJDtCCM8IK1sj5GJzFuSJ5aigV6f9LJrv34gbcBbD9HP41Yjw7baXQ-5U33ePjDsw2T6WGIuJsCTmvI2jtw-AUShAgjtrOBU3TU6T7C2a8u0dvtzevqvnh8vntYXT8WlkmWCuuMqQ2xDKzhHXdcd7mKCkF1DZXTDQMhmhpMQ5nruNCmbh23LXeuosYwtkQX-9581ecMManBRwt9r0eY5qiolKSSkjOerXRvtWGKMUCntsEPOnwrStQOpdqojFLtUCpCVUaZM1f7DOQfvjwEFa2H0YLzGUhSbvL_pH8ANC9_Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770277434</pqid></control><display><type>article</type><title>Matching preclusion and conditional matching preclusion problems for the folded Petersen cube</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cheng, Eddie ; Connolly, Robert ; Melekian, Christoper</creator><creatorcontrib>Cheng, Eddie ; Connolly, Robert ; Melekian, Christoper</creatorcontrib><description>The matching preclusion number of an even graph is the minimum number of edges whose deletion results in a graph that has no perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. Recently, the conditional matching preclusion number of an even graph was introduced to look for obstruction sets beyond those induced by a single vertex. It is defined to be the minimum number of edges whose deletion results in a graph with no isolated vertices and no perfect matchings. In this paper, we study this problem for the folded Petersen cube FPQ(n,k) via some matching preclusion and conditional matching preclusion results of the Cartesian products of graphs.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2015.01.046</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Conditional matching preclusion ; Cubes ; Deletion ; Folded Petersen cube ; Graph theory ; Graphs ; Interconnection ; Matching ; Matching preclusion ; Obstructions ; Optimization ; Perfect matching</subject><ispartof>Theoretical computer science, 2015-04, Vol.576, p.30-44</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-cdbb5b0c3ecb4f4d4afded1661a5e2da83e6685eb813df46ab59d4c94dd21bb33</citedby><cites>FETCH-LOGICAL-c373t-cdbb5b0c3ecb4f4d4afded1661a5e2da83e6685eb813df46ab59d4c94dd21bb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcs.2015.01.046$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Cheng, Eddie</creatorcontrib><creatorcontrib>Connolly, Robert</creatorcontrib><creatorcontrib>Melekian, Christoper</creatorcontrib><title>Matching preclusion and conditional matching preclusion problems for the folded Petersen cube</title><title>Theoretical computer science</title><description>The matching preclusion number of an even graph is the minimum number of edges whose deletion results in a graph that has no perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. Recently, the conditional matching preclusion number of an even graph was introduced to look for obstruction sets beyond those induced by a single vertex. It is defined to be the minimum number of edges whose deletion results in a graph with no isolated vertices and no perfect matchings. In this paper, we study this problem for the folded Petersen cube FPQ(n,k) via some matching preclusion and conditional matching preclusion results of the Cartesian products of graphs.</description><subject>Conditional matching preclusion</subject><subject>Cubes</subject><subject>Deletion</subject><subject>Folded Petersen cube</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Interconnection</subject><subject>Matching</subject><subject>Matching preclusion</subject><subject>Obstructions</subject><subject>Optimization</subject><subject>Perfect matching</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouK7-AG85epkxmWSSGTzJ4gsUPehRQh49bpZ5rElG8N-bZT2KfSkaqoruD6FzSkpKqLjclMnGsiK0LgktCRcHaEEb2RZV1fJDtCCM8IK1sj5GJzFuSJ5aigV6f9LJrv34gbcBbD9HP41Yjw7baXQ-5U33ePjDsw2T6WGIuJsCTmvI2jtw-AUShAgjtrOBU3TU6T7C2a8u0dvtzevqvnh8vntYXT8WlkmWCuuMqQ2xDKzhHXdcd7mKCkF1DZXTDQMhmhpMQ5nruNCmbh23LXeuosYwtkQX-9581ecMManBRwt9r0eY5qiolKSSkjOerXRvtWGKMUCntsEPOnwrStQOpdqojFLtUCpCVUaZM1f7DOQfvjwEFa2H0YLzGUhSbvL_pH8ANC9_Jw</recordid><startdate>20150420</startdate><enddate>20150420</enddate><creator>Cheng, Eddie</creator><creator>Connolly, Robert</creator><creator>Melekian, Christoper</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150420</creationdate><title>Matching preclusion and conditional matching preclusion problems for the folded Petersen cube</title><author>Cheng, Eddie ; Connolly, Robert ; Melekian, Christoper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-cdbb5b0c3ecb4f4d4afded1661a5e2da83e6685eb813df46ab59d4c94dd21bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Conditional matching preclusion</topic><topic>Cubes</topic><topic>Deletion</topic><topic>Folded Petersen cube</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Interconnection</topic><topic>Matching</topic><topic>Matching preclusion</topic><topic>Obstructions</topic><topic>Optimization</topic><topic>Perfect matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Eddie</creatorcontrib><creatorcontrib>Connolly, Robert</creatorcontrib><creatorcontrib>Melekian, Christoper</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Eddie</au><au>Connolly, Robert</au><au>Melekian, Christoper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matching preclusion and conditional matching preclusion problems for the folded Petersen cube</atitle><jtitle>Theoretical computer science</jtitle><date>2015-04-20</date><risdate>2015</risdate><volume>576</volume><spage>30</spage><epage>44</epage><pages>30-44</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>The matching preclusion number of an even graph is the minimum number of edges whose deletion results in a graph that has no perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. Recently, the conditional matching preclusion number of an even graph was introduced to look for obstruction sets beyond those induced by a single vertex. It is defined to be the minimum number of edges whose deletion results in a graph with no isolated vertices and no perfect matchings. In this paper, we study this problem for the folded Petersen cube FPQ(n,k) via some matching preclusion and conditional matching preclusion results of the Cartesian products of graphs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2015.01.046</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2015-04, Vol.576, p.30-44 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770277434 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Conditional matching preclusion Cubes Deletion Folded Petersen cube Graph theory Graphs Interconnection Matching Matching preclusion Obstructions Optimization Perfect matching |
title | Matching preclusion and conditional matching preclusion problems for the folded Petersen cube |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matching%20preclusion%20and%20conditional%20matching%20preclusion%20problems%20for%20the%20folded%20Petersen%20cube&rft.jtitle=Theoretical%20computer%20science&rft.au=Cheng,%20Eddie&rft.date=2015-04-20&rft.volume=576&rft.spage=30&rft.epage=44&rft.pages=30-44&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2015.01.046&rft_dat=%3Cproquest_cross%3E1770277434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770277434&rft_id=info:pmid/&rft_els_id=S0304397515000936&rfr_iscdi=true |