Moving quark in a general fluid dynamical flow

A bstract We determine the most general form of the covariant drag force exerted on a quark moving through a fluid dynamical flow. Up to first order in derivative expansion, our general formula requires the specification of seven coefficient functions. We use the perturbative method introduced in ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2013-12, Vol.2013 (12), p.1-26, Article 26
Hauptverfasser: Abbasi, Navid, Davody, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 12
container_start_page 1
container_title The journal of high energy physics
container_volume 2013
creator Abbasi, Navid
Davody, Ali
description A bstract We determine the most general form of the covariant drag force exerted on a quark moving through a fluid dynamical flow. Up to first order in derivative expansion, our general formula requires the specification of seven coefficient functions. We use the perturbative method introduced in arXiv:1202.2737 and find all these coefficients in the hydrodynamic regime of a = 4 SYM plasma. Having this general formula, we can obtain the rate of the energy and momentum loss of a quark, namely the drag force, in a general flow. This result makes it possible to perturbatively study the motion of heavy quarks moving through the Bjorken flow up to first order in derivative expansion.
doi_str_mv 10.1007/JHEP12(2013)026
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770275266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770275266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-480d71dd2d4d5536d7154c54543581edbc10f6ec0af5d0005d3ff5f364aa14ed3</originalsourceid><addsrcrecordid>eNp1kE1PwkAQhjdGExE9e23iBQ-Fmf3olqMhIBqMHvS8WfeDFEsLu1TDv7dYD8TE08wkz_tm8hByjTBEADl6nE9fkA4oILsFmp2QHgIdpzmX49Oj_ZxcxLgCQIFj6JHhU_1ZVMtk2-jwkRRVopOlq1zQZeLLprCJ3Vd6XZifu_66JGdel9Fd_c4-eZtNXyfzdPF8_zC5W6SGcbZLeQ5WorXUcisEy9pDcCO44Ezk6Oy7QfCZM6C9sAAgLPNeeJZxrZE7y_pk0PVuQr1tXNypdRGNK0tdubqJCqUEKgXNsha9-YOu6iZU7XcKM0HzHBFlS406yoQ6xuC82oRircNeIaiDP9X5Uwd_qvXXJqBLxJasli4c9f4T-QaXqm-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652881117</pqid></control><display><type>article</type><title>Moving quark in a general fluid dynamical flow</title><source>Springer Nature OA Free Journals</source><creator>Abbasi, Navid ; Davody, Ali</creator><creatorcontrib>Abbasi, Navid ; Davody, Ali</creatorcontrib><description>A bstract We determine the most general form of the covariant drag force exerted on a quark moving through a fluid dynamical flow. Up to first order in derivative expansion, our general formula requires the specification of seven coefficient functions. We use the perturbative method introduced in arXiv:1202.2737 and find all these coefficients in the hydrodynamic regime of a = 4 SYM plasma. Having this general formula, we can obtain the rate of the energy and momentum loss of a quark, namely the drag force, in a general flow. This result makes it possible to perturbatively study the motion of heavy quarks moving through the Bjorken flow up to first order in derivative expansion.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP12(2013)026</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Computational fluid dynamics ; Derivatives ; Drag force ; Elementary Particles ; Fluid flow ; Fluids ; High energy physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Quarks ; Relativity Theory ; Specifications ; String Theory</subject><ispartof>The journal of high energy physics, 2013-12, Vol.2013 (12), p.1-26, Article 26</ispartof><rights>SISSA, Trieste, Italy 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-480d71dd2d4d5536d7154c54543581edbc10f6ec0af5d0005d3ff5f364aa14ed3</citedby><cites>FETCH-LOGICAL-c343t-480d71dd2d4d5536d7154c54543581edbc10f6ec0af5d0005d3ff5f364aa14ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP12(2013)026$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/JHEP12(2013)026$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP12(2013)026$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Abbasi, Navid</creatorcontrib><creatorcontrib>Davody, Ali</creatorcontrib><title>Moving quark in a general fluid dynamical flow</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We determine the most general form of the covariant drag force exerted on a quark moving through a fluid dynamical flow. Up to first order in derivative expansion, our general formula requires the specification of seven coefficient functions. We use the perturbative method introduced in arXiv:1202.2737 and find all these coefficients in the hydrodynamic regime of a = 4 SYM plasma. Having this general formula, we can obtain the rate of the energy and momentum loss of a quark, namely the drag force, in a general flow. This result makes it possible to perturbatively study the motion of heavy quarks moving through the Bjorken flow up to first order in derivative expansion.</description><subject>Classical and Quantum Gravitation</subject><subject>Computational fluid dynamics</subject><subject>Derivatives</subject><subject>Drag force</subject><subject>Elementary Particles</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>High energy physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Quarks</subject><subject>Relativity Theory</subject><subject>Specifications</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1PwkAQhjdGExE9e23iBQ-Fmf3olqMhIBqMHvS8WfeDFEsLu1TDv7dYD8TE08wkz_tm8hByjTBEADl6nE9fkA4oILsFmp2QHgIdpzmX49Oj_ZxcxLgCQIFj6JHhU_1ZVMtk2-jwkRRVopOlq1zQZeLLprCJ3Vd6XZifu_66JGdel9Fd_c4-eZtNXyfzdPF8_zC5W6SGcbZLeQ5WorXUcisEy9pDcCO44Ezk6Oy7QfCZM6C9sAAgLPNeeJZxrZE7y_pk0PVuQr1tXNypdRGNK0tdubqJCqUEKgXNsha9-YOu6iZU7XcKM0HzHBFlS406yoQ6xuC82oRircNeIaiDP9X5Uwd_qvXXJqBLxJasli4c9f4T-QaXqm-w</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Abbasi, Navid</creator><creator>Davody, Ali</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Moving quark in a general fluid dynamical flow</title><author>Abbasi, Navid ; Davody, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-480d71dd2d4d5536d7154c54543581edbc10f6ec0af5d0005d3ff5f364aa14ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Computational fluid dynamics</topic><topic>Derivatives</topic><topic>Drag force</topic><topic>Elementary Particles</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>High energy physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Quarks</topic><topic>Relativity Theory</topic><topic>Specifications</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbasi, Navid</creatorcontrib><creatorcontrib>Davody, Ali</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abbasi, Navid</au><au>Davody, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moving quark in a general fluid dynamical flow</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>2013</volume><issue>12</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>26</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We determine the most general form of the covariant drag force exerted on a quark moving through a fluid dynamical flow. Up to first order in derivative expansion, our general formula requires the specification of seven coefficient functions. We use the perturbative method introduced in arXiv:1202.2737 and find all these coefficients in the hydrodynamic regime of a = 4 SYM plasma. Having this general formula, we can obtain the rate of the energy and momentum loss of a quark, namely the drag force, in a general flow. This result makes it possible to perturbatively study the motion of heavy quarks moving through the Bjorken flow up to first order in derivative expansion.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP12(2013)026</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2013-12, Vol.2013 (12), p.1-26, Article 26
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_miscellaneous_1770275266
source Springer Nature OA Free Journals
subjects Classical and Quantum Gravitation
Computational fluid dynamics
Derivatives
Drag force
Elementary Particles
Fluid flow
Fluids
High energy physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quarks
Relativity Theory
Specifications
String Theory
title Moving quark in a general fluid dynamical flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moving%20quark%20in%20a%20general%20fluid%20dynamical%20flow&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Abbasi,%20Navid&rft.date=2013-12-01&rft.volume=2013&rft.issue=12&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=26&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP12(2013)026&rft_dat=%3Cproquest_C6C%3E1770275266%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652881117&rft_id=info:pmid/&rfr_iscdi=true