Stable non-Fermi-liquid phase of itinerant spin-orbit coupled ferromagnets
Direct (nongradient) coupling between a gapless bosonic field and a Fermi surface results in the destruction of Landau quasiparticles and a breakdown of Fermi liquid theory. Such a non-Fermi-liquid phase arises in spin-orbit coupled ferromagnets with spontaneously broken continuous symmetries due to...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2015-07, Vol.92 (3), Article 035131 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physical review. B, Condensed matter and materials physics |
container_volume | 92 |
creator | Bahri, Yasaman Potter, Andrew C. |
description | Direct (nongradient) coupling between a gapless bosonic field and a Fermi surface results in the destruction of Landau quasiparticles and a breakdown of Fermi liquid theory. Such a non-Fermi-liquid phase arises in spin-orbit coupled ferromagnets with spontaneously broken continuous symmetries due to strong coupling between rotational Goldstone modes and itinerant electrons. These systems provide an experimentally accessible context for studying non-Fermi-liquid physics. Possible examples include low-density Rashba coupled electron gases, which have a natural tendency towards spontaneous ferromagnetism, or topological insulator surface states with proximity-induced ferromagnetism. Crucially, unlike the related case of a spontaneous nematic distortion of the Fermi surface, for which controlled field theory calculations predict that the non-Fermi-liquid regime will be masked by a superconducting dome, we show that the non-Fermi-liquid phase in spin-orbit coupled ferromagnets is stable. |
doi_str_mv | 10.1103/PhysRevB.92.035131 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770274512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770274512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-9666c77b135e7bc6c3a0def58a623cb6b9424f4970b7a5328d63756ee01253563</originalsourceid><addsrcrecordid>eNo1kEtLxDAYRYMoOI7-AVdZusmYR5NMlzr4ZEDxAe5Ckn51Im3TSVph_r2V0dW9i8vlcBA6Z3TBGBWXz5tdfoHv60XJF1RIJtgBmjEpKeFCfhxOnZZLQhlnx-gk5y9KWVEWfIYeXwfrGsBd7MgtpDaQJmzHUOF-YzPgWOMwhA6S7Qac-9CRmFwYsI9j30CFa0gptvazgyGfoqPaNhnO_nKO3m9v3lb3ZP1097C6WhMveDGQUinltXZMSNDOKy8sraCWS6u48E65iauoi1JTp60UfFkpoaUCmOilkErM0cX-t09xO0IeTBuyh6axHcQxG6Y15bqQjE9Tvp_6FHNOUJs-hdamnWHU_Ioz_-JMyc1enPgBzOtivw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770274512</pqid></control><display><type>article</type><title>Stable non-Fermi-liquid phase of itinerant spin-orbit coupled ferromagnets</title><source>American Physical Society Journals</source><creator>Bahri, Yasaman ; Potter, Andrew C.</creator><creatorcontrib>Bahri, Yasaman ; Potter, Andrew C.</creatorcontrib><description>Direct (nongradient) coupling between a gapless bosonic field and a Fermi surface results in the destruction of Landau quasiparticles and a breakdown of Fermi liquid theory. Such a non-Fermi-liquid phase arises in spin-orbit coupled ferromagnets with spontaneously broken continuous symmetries due to strong coupling between rotational Goldstone modes and itinerant electrons. These systems provide an experimentally accessible context for studying non-Fermi-liquid physics. Possible examples include low-density Rashba coupled electron gases, which have a natural tendency towards spontaneous ferromagnetism, or topological insulator surface states with proximity-induced ferromagnetism. Crucially, unlike the related case of a spontaneous nematic distortion of the Fermi surface, for which controlled field theory calculations predict that the non-Fermi-liquid regime will be masked by a superconducting dome, we show that the non-Fermi-liquid phase in spin-orbit coupled ferromagnets is stable.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.92.035131</identifier><language>eng</language><subject>Accessibility ; Condensed matter ; Fermi surfaces ; Ferromagnetism ; Field theory ; Insulators ; Joining ; Spontaneous</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2015-07, Vol.92 (3), Article 035131</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-9666c77b135e7bc6c3a0def58a623cb6b9424f4970b7a5328d63756ee01253563</citedby><cites>FETCH-LOGICAL-c324t-9666c77b135e7bc6c3a0def58a623cb6b9424f4970b7a5328d63756ee01253563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Bahri, Yasaman</creatorcontrib><creatorcontrib>Potter, Andrew C.</creatorcontrib><title>Stable non-Fermi-liquid phase of itinerant spin-orbit coupled ferromagnets</title><title>Physical review. B, Condensed matter and materials physics</title><description>Direct (nongradient) coupling between a gapless bosonic field and a Fermi surface results in the destruction of Landau quasiparticles and a breakdown of Fermi liquid theory. Such a non-Fermi-liquid phase arises in spin-orbit coupled ferromagnets with spontaneously broken continuous symmetries due to strong coupling between rotational Goldstone modes and itinerant electrons. These systems provide an experimentally accessible context for studying non-Fermi-liquid physics. Possible examples include low-density Rashba coupled electron gases, which have a natural tendency towards spontaneous ferromagnetism, or topological insulator surface states with proximity-induced ferromagnetism. Crucially, unlike the related case of a spontaneous nematic distortion of the Fermi surface, for which controlled field theory calculations predict that the non-Fermi-liquid regime will be masked by a superconducting dome, we show that the non-Fermi-liquid phase in spin-orbit coupled ferromagnets is stable.</description><subject>Accessibility</subject><subject>Condensed matter</subject><subject>Fermi surfaces</subject><subject>Ferromagnetism</subject><subject>Field theory</subject><subject>Insulators</subject><subject>Joining</subject><subject>Spontaneous</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLxDAYRYMoOI7-AVdZusmYR5NMlzr4ZEDxAe5Ckn51Im3TSVph_r2V0dW9i8vlcBA6Z3TBGBWXz5tdfoHv60XJF1RIJtgBmjEpKeFCfhxOnZZLQhlnx-gk5y9KWVEWfIYeXwfrGsBd7MgtpDaQJmzHUOF-YzPgWOMwhA6S7Qac-9CRmFwYsI9j30CFa0gptvazgyGfoqPaNhnO_nKO3m9v3lb3ZP1097C6WhMveDGQUinltXZMSNDOKy8sraCWS6u48E65iauoi1JTp60UfFkpoaUCmOilkErM0cX-t09xO0IeTBuyh6axHcQxG6Y15bqQjE9Tvp_6FHNOUJs-hdamnWHU_Ioz_-JMyc1enPgBzOtivw</recordid><startdate>20150716</startdate><enddate>20150716</enddate><creator>Bahri, Yasaman</creator><creator>Potter, Andrew C.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150716</creationdate><title>Stable non-Fermi-liquid phase of itinerant spin-orbit coupled ferromagnets</title><author>Bahri, Yasaman ; Potter, Andrew C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-9666c77b135e7bc6c3a0def58a623cb6b9424f4970b7a5328d63756ee01253563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accessibility</topic><topic>Condensed matter</topic><topic>Fermi surfaces</topic><topic>Ferromagnetism</topic><topic>Field theory</topic><topic>Insulators</topic><topic>Joining</topic><topic>Spontaneous</topic><toplevel>online_resources</toplevel><creatorcontrib>Bahri, Yasaman</creatorcontrib><creatorcontrib>Potter, Andrew C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahri, Yasaman</au><au>Potter, Andrew C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable non-Fermi-liquid phase of itinerant spin-orbit coupled ferromagnets</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2015-07-16</date><risdate>2015</risdate><volume>92</volume><issue>3</issue><artnum>035131</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>Direct (nongradient) coupling between a gapless bosonic field and a Fermi surface results in the destruction of Landau quasiparticles and a breakdown of Fermi liquid theory. Such a non-Fermi-liquid phase arises in spin-orbit coupled ferromagnets with spontaneously broken continuous symmetries due to strong coupling between rotational Goldstone modes and itinerant electrons. These systems provide an experimentally accessible context for studying non-Fermi-liquid physics. Possible examples include low-density Rashba coupled electron gases, which have a natural tendency towards spontaneous ferromagnetism, or topological insulator surface states with proximity-induced ferromagnetism. Crucially, unlike the related case of a spontaneous nematic distortion of the Fermi surface, for which controlled field theory calculations predict that the non-Fermi-liquid regime will be masked by a superconducting dome, we show that the non-Fermi-liquid phase in spin-orbit coupled ferromagnets is stable.</abstract><doi>10.1103/PhysRevB.92.035131</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, Condensed matter and materials physics, 2015-07, Vol.92 (3), Article 035131 |
issn | 1098-0121 1550-235X |
language | eng |
recordid | cdi_proquest_miscellaneous_1770274512 |
source | American Physical Society Journals |
subjects | Accessibility Condensed matter Fermi surfaces Ferromagnetism Field theory Insulators Joining Spontaneous |
title | Stable non-Fermi-liquid phase of itinerant spin-orbit coupled ferromagnets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20non-Fermi-liquid%20phase%20of%20itinerant%20spin-orbit%20coupled%20ferromagnets&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Bahri,%20Yasaman&rft.date=2015-07-16&rft.volume=92&rft.issue=3&rft.artnum=035131&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.92.035131&rft_dat=%3Cproquest_cross%3E1770274512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770274512&rft_id=info:pmid/&rfr_iscdi=true |