A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation

Abstract Neural stem cells (NSCs) demonstrate encouraging results in cell replacement therapy for neurodegenerative disorders and traumatic injury in the central nervous system. Monitor the survival and migration of transplanted cells would provide us important information concerning the performance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2015-06, Vol.54, p.158-167
Hauptverfasser: Egawa, Edgar Y, Kitamura, Narufumi, Nakai, Ryusuke, Arima, Yusuke, Iwata, Hiroo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue
container_start_page 158
container_title Biomaterials
container_volume 54
creator Egawa, Edgar Y
Kitamura, Narufumi
Nakai, Ryusuke
Arima, Yusuke
Iwata, Hiroo
description Abstract Neural stem cells (NSCs) demonstrate encouraging results in cell replacement therapy for neurodegenerative disorders and traumatic injury in the central nervous system. Monitor the survival and migration of transplanted cells would provide us important information concerning the performance and integration of the graft during the therapy time course. Magnetic resonance imaging (MRI) allow us to monitor the transplanted cells in a non-invasive way. The only requirement is to use an appropriate contrast agent to label the transplanted cells. Superparamagnetic iron oxide (SPIO) nanoparticles are one of the most commonly used contrast agent for MRI detection of transplanted cells. SPIO nanoparticles demonstrated to be suitable for labeling several types of cells including NSCs. However, the current methods for SPIO labeling are non-specific, depending mostly on electrostatic interactions, demanding relatively high SPIO concentration, and long incubation time, which can affect the viability of cells. In this study, we propose a specific and relatively fast method to label NSCs with SPIO nanoparticles via DNA hybridization. Two short single stranded DNAs (ssDNAs), oligo[dT]20 and oligo[dA]20 were conjugated with a lipid molecule and SPIO nanoparticle respectively. The labeling process comprises two simple steps; first the cells are modified to present oligo[dT]20 ssDNA on the cell surface, then the oligo[dA]20 ssDNA conjugated with SPIO nanoparticles are presented to the modified cells to allow the oligo[dT]20 -oligo[dA]20 hybridization. The method showed to be non-toxic at concentrations up to 50 μg/mL oligo[dA]20 -SPIO nanoparticles. Presence of SPIO nanoparticles at cell surface and cell cytoplasm was verified by transmission electron microscopy (TEM). SPIO labeling via DNA hybridization demonstrated to not interfere on NSCs proliferation, aggregates formation, and differentiation. NSCs labeled with SPIO nanoparticles via DNA hybridization system were successfully detected by MRI in vitro as well in vivo . Cells transplanted into the rat brain striatum could be detected by MRI scanning up to 1 month post-transplantation.
doi_str_mv 10.1016/j.biomaterials.2015.03.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770272249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961215002872</els_id><sourcerecordid>1770272249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-f7bfb467ed1326e686ccbc6ceb54af5a2e4458ffaaed69f7a5ccfc5b6deffe23</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhLyCLE5cE24nthAPSquVjpUIR7d1ynDH1kthb2wEt4seT7BaEOPVkWX7eGY2fQegFJSUlVLzalp0Lo84QnR5SyQjlJalKQuUDtKKNbAreEv4QrQitWdEKyk7Qk5S2ZL6Tmj1GJ2wGJKnbFfq1xuef1vhm30XXu586u-Bx2qcMI7Yh4kF3MDj_FQeLPUxRD_jwZmAYEv7h8g2--ry5xF77sNMxOzNAOiQ_ftngMXiXQ1zyu5BykaP2aTdonw-NnqJHdp4Ant2dp-j63dvrsw_FxeX7zdn6ojCc0FxY2dmuFhJ6WjEBohHGdEYY6HitLdcM6po31moNvWit1NwYa3gnerAWWHWKXh7L7mK4nSBlNbq0DKA9hCkpKiVhkrG6vQdasYaKWi7o6yNqYkgpglW76EYd94oStXhSW_WvJ7V4UqRSs6c5_Pyuz9SN0P-N_hEzA-dHAOZ_-e4gqmQceAO9i2Cy6oO7X583_5Uxs01n9PAN9pC2YYp-yVCVmCLqatmYZWEoJ4Q1klW_AfeCw4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732816479</pqid></control><display><type>article</type><title>A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Egawa, Edgar Y ; Kitamura, Narufumi ; Nakai, Ryusuke ; Arima, Yusuke ; Iwata, Hiroo</creator><creatorcontrib>Egawa, Edgar Y ; Kitamura, Narufumi ; Nakai, Ryusuke ; Arima, Yusuke ; Iwata, Hiroo</creatorcontrib><description>Abstract Neural stem cells (NSCs) demonstrate encouraging results in cell replacement therapy for neurodegenerative disorders and traumatic injury in the central nervous system. Monitor the survival and migration of transplanted cells would provide us important information concerning the performance and integration of the graft during the therapy time course. Magnetic resonance imaging (MRI) allow us to monitor the transplanted cells in a non-invasive way. The only requirement is to use an appropriate contrast agent to label the transplanted cells. Superparamagnetic iron oxide (SPIO) nanoparticles are one of the most commonly used contrast agent for MRI detection of transplanted cells. SPIO nanoparticles demonstrated to be suitable for labeling several types of cells including NSCs. However, the current methods for SPIO labeling are non-specific, depending mostly on electrostatic interactions, demanding relatively high SPIO concentration, and long incubation time, which can affect the viability of cells. In this study, we propose a specific and relatively fast method to label NSCs with SPIO nanoparticles via DNA hybridization. Two short single stranded DNAs (ssDNAs), oligo[dT]20 and oligo[dA]20 were conjugated with a lipid molecule and SPIO nanoparticle respectively. The labeling process comprises two simple steps; first the cells are modified to present oligo[dT]20 ssDNA on the cell surface, then the oligo[dA]20 ssDNA conjugated with SPIO nanoparticles are presented to the modified cells to allow the oligo[dT]20 -oligo[dA]20 hybridization. The method showed to be non-toxic at concentrations up to 50 μg/mL oligo[dA]20 -SPIO nanoparticles. Presence of SPIO nanoparticles at cell surface and cell cytoplasm was verified by transmission electron microscopy (TEM). SPIO labeling via DNA hybridization demonstrated to not interfere on NSCs proliferation, aggregates formation, and differentiation. NSCs labeled with SPIO nanoparticles via DNA hybridization system were successfully detected by MRI in vitro as well in vivo . Cells transplanted into the rat brain striatum could be detected by MRI scanning up to 1 month post-transplantation.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.03.017</identifier><identifier>PMID: 25907049</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Cell Tracking - methods ; Cells, Cultured ; Contrast agents ; Contrast Media ; Dentistry ; Deoxyribonucleic acid ; Dextrans ; DNA Probes - genetics ; In vitro test ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Magnetite Nanoparticles ; Marking ; Monitors ; MRI (magnetic resonance imaging) ; Nanoparticle ; Nanoparticles ; Neural cell ; Neural Stem Cells - cytology ; Neural Stem Cells - physiology ; Neural Stem Cells - transplantation ; Rats ; Rats, Sprague-Dawley ; Staining and Labeling ; Stem cell ; Surgical implants ; Therapy ; Transplantation</subject><ispartof>Biomaterials, 2015-06, Vol.54, p.158-167</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-f7bfb467ed1326e686ccbc6ceb54af5a2e4458ffaaed69f7a5ccfc5b6deffe23</citedby><cites>FETCH-LOGICAL-c501t-f7bfb467ed1326e686ccbc6ceb54af5a2e4458ffaaed69f7a5ccfc5b6deffe23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961215002872$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25907049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Egawa, Edgar Y</creatorcontrib><creatorcontrib>Kitamura, Narufumi</creatorcontrib><creatorcontrib>Nakai, Ryusuke</creatorcontrib><creatorcontrib>Arima, Yusuke</creatorcontrib><creatorcontrib>Iwata, Hiroo</creatorcontrib><title>A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Neural stem cells (NSCs) demonstrate encouraging results in cell replacement therapy for neurodegenerative disorders and traumatic injury in the central nervous system. Monitor the survival and migration of transplanted cells would provide us important information concerning the performance and integration of the graft during the therapy time course. Magnetic resonance imaging (MRI) allow us to monitor the transplanted cells in a non-invasive way. The only requirement is to use an appropriate contrast agent to label the transplanted cells. Superparamagnetic iron oxide (SPIO) nanoparticles are one of the most commonly used contrast agent for MRI detection of transplanted cells. SPIO nanoparticles demonstrated to be suitable for labeling several types of cells including NSCs. However, the current methods for SPIO labeling are non-specific, depending mostly on electrostatic interactions, demanding relatively high SPIO concentration, and long incubation time, which can affect the viability of cells. In this study, we propose a specific and relatively fast method to label NSCs with SPIO nanoparticles via DNA hybridization. Two short single stranded DNAs (ssDNAs), oligo[dT]20 and oligo[dA]20 were conjugated with a lipid molecule and SPIO nanoparticle respectively. The labeling process comprises two simple steps; first the cells are modified to present oligo[dT]20 ssDNA on the cell surface, then the oligo[dA]20 ssDNA conjugated with SPIO nanoparticles are presented to the modified cells to allow the oligo[dT]20 -oligo[dA]20 hybridization. The method showed to be non-toxic at concentrations up to 50 μg/mL oligo[dA]20 -SPIO nanoparticles. Presence of SPIO nanoparticles at cell surface and cell cytoplasm was verified by transmission electron microscopy (TEM). SPIO labeling via DNA hybridization demonstrated to not interfere on NSCs proliferation, aggregates formation, and differentiation. NSCs labeled with SPIO nanoparticles via DNA hybridization system were successfully detected by MRI in vitro as well in vivo . Cells transplanted into the rat brain striatum could be detected by MRI scanning up to 1 month post-transplantation.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Cell Tracking - methods</subject><subject>Cells, Cultured</subject><subject>Contrast agents</subject><subject>Contrast Media</subject><subject>Dentistry</subject><subject>Deoxyribonucleic acid</subject><subject>Dextrans</subject><subject>DNA Probes - genetics</subject><subject>In vitro test</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetite Nanoparticles</subject><subject>Marking</subject><subject>Monitors</subject><subject>MRI (magnetic resonance imaging)</subject><subject>Nanoparticle</subject><subject>Nanoparticles</subject><subject>Neural cell</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - physiology</subject><subject>Neural Stem Cells - transplantation</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Staining and Labeling</subject><subject>Stem cell</subject><subject>Surgical implants</subject><subject>Therapy</subject><subject>Transplantation</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhi0EokvhLyCLE5cE24nthAPSquVjpUIR7d1ynDH1kthb2wEt4seT7BaEOPVkWX7eGY2fQegFJSUlVLzalp0Lo84QnR5SyQjlJalKQuUDtKKNbAreEv4QrQitWdEKyk7Qk5S2ZL6Tmj1GJ2wGJKnbFfq1xuef1vhm30XXu586u-Bx2qcMI7Yh4kF3MDj_FQeLPUxRD_jwZmAYEv7h8g2--ry5xF77sNMxOzNAOiQ_ftngMXiXQ1zyu5BykaP2aTdonw-NnqJHdp4Ant2dp-j63dvrsw_FxeX7zdn6ojCc0FxY2dmuFhJ6WjEBohHGdEYY6HitLdcM6po31moNvWit1NwYa3gnerAWWHWKXh7L7mK4nSBlNbq0DKA9hCkpKiVhkrG6vQdasYaKWi7o6yNqYkgpglW76EYd94oStXhSW_WvJ7V4UqRSs6c5_Pyuz9SN0P-N_hEzA-dHAOZ_-e4gqmQceAO9i2Cy6oO7X583_5Uxs01n9PAN9pC2YYp-yVCVmCLqatmYZWEoJ4Q1klW_AfeCw4Y</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Egawa, Edgar Y</creator><creator>Kitamura, Narufumi</creator><creator>Nakai, Ryusuke</creator><creator>Arima, Yusuke</creator><creator>Iwata, Hiroo</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150601</creationdate><title>A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation</title><author>Egawa, Edgar Y ; Kitamura, Narufumi ; Nakai, Ryusuke ; Arima, Yusuke ; Iwata, Hiroo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-f7bfb467ed1326e686ccbc6ceb54af5a2e4458ffaaed69f7a5ccfc5b6deffe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Cell Tracking - methods</topic><topic>Cells, Cultured</topic><topic>Contrast agents</topic><topic>Contrast Media</topic><topic>Dentistry</topic><topic>Deoxyribonucleic acid</topic><topic>Dextrans</topic><topic>DNA Probes - genetics</topic><topic>In vitro test</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetite Nanoparticles</topic><topic>Marking</topic><topic>Monitors</topic><topic>MRI (magnetic resonance imaging)</topic><topic>Nanoparticle</topic><topic>Nanoparticles</topic><topic>Neural cell</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - physiology</topic><topic>Neural Stem Cells - transplantation</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Staining and Labeling</topic><topic>Stem cell</topic><topic>Surgical implants</topic><topic>Therapy</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egawa, Edgar Y</creatorcontrib><creatorcontrib>Kitamura, Narufumi</creatorcontrib><creatorcontrib>Nakai, Ryusuke</creatorcontrib><creatorcontrib>Arima, Yusuke</creatorcontrib><creatorcontrib>Iwata, Hiroo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egawa, Edgar Y</au><au>Kitamura, Narufumi</au><au>Nakai, Ryusuke</au><au>Arima, Yusuke</au><au>Iwata, Hiroo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>54</volume><spage>158</spage><epage>167</epage><pages>158-167</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Neural stem cells (NSCs) demonstrate encouraging results in cell replacement therapy for neurodegenerative disorders and traumatic injury in the central nervous system. Monitor the survival and migration of transplanted cells would provide us important information concerning the performance and integration of the graft during the therapy time course. Magnetic resonance imaging (MRI) allow us to monitor the transplanted cells in a non-invasive way. The only requirement is to use an appropriate contrast agent to label the transplanted cells. Superparamagnetic iron oxide (SPIO) nanoparticles are one of the most commonly used contrast agent for MRI detection of transplanted cells. SPIO nanoparticles demonstrated to be suitable for labeling several types of cells including NSCs. However, the current methods for SPIO labeling are non-specific, depending mostly on electrostatic interactions, demanding relatively high SPIO concentration, and long incubation time, which can affect the viability of cells. In this study, we propose a specific and relatively fast method to label NSCs with SPIO nanoparticles via DNA hybridization. Two short single stranded DNAs (ssDNAs), oligo[dT]20 and oligo[dA]20 were conjugated with a lipid molecule and SPIO nanoparticle respectively. The labeling process comprises two simple steps; first the cells are modified to present oligo[dT]20 ssDNA on the cell surface, then the oligo[dA]20 ssDNA conjugated with SPIO nanoparticles are presented to the modified cells to allow the oligo[dT]20 -oligo[dA]20 hybridization. The method showed to be non-toxic at concentrations up to 50 μg/mL oligo[dA]20 -SPIO nanoparticles. Presence of SPIO nanoparticles at cell surface and cell cytoplasm was verified by transmission electron microscopy (TEM). SPIO labeling via DNA hybridization demonstrated to not interfere on NSCs proliferation, aggregates formation, and differentiation. NSCs labeled with SPIO nanoparticles via DNA hybridization system were successfully detected by MRI in vitro as well in vivo . Cells transplanted into the rat brain striatum could be detected by MRI scanning up to 1 month post-transplantation.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25907049</pmid><doi>10.1016/j.biomaterials.2015.03.017</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2015-06, Vol.54, p.158-167
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1770272249
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Animals
Cell Tracking - methods
Cells, Cultured
Contrast agents
Contrast Media
Dentistry
Deoxyribonucleic acid
Dextrans
DNA Probes - genetics
In vitro test
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetite Nanoparticles
Marking
Monitors
MRI (magnetic resonance imaging)
Nanoparticle
Nanoparticles
Neural cell
Neural Stem Cells - cytology
Neural Stem Cells - physiology
Neural Stem Cells - transplantation
Rats
Rats, Sprague-Dawley
Staining and Labeling
Stem cell
Surgical implants
Therapy
Transplantation
title A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20DNA%20hybridization%20system%20for%20labeling%20of%20neural%20stem%20cells%20with%20SPIO%20nanoparticles%20for%20MRI%20monitoring%20post-transplantation&rft.jtitle=Biomaterials&rft.au=Egawa,%20Edgar%20Y&rft.date=2015-06-01&rft.volume=54&rft.spage=158&rft.epage=167&rft.pages=158-167&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.03.017&rft_dat=%3Cproquest_cross%3E1770272249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732816479&rft_id=info:pmid/25907049&rft_els_id=S0142961215002872&rfr_iscdi=true