Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer
Understanding the vertical phase separation of donor and acceptor compounds in organic photovoltaics is requisite for the control of charge transport behavior and the achievement of efficient charge collection. Here, the vertically phase‐separated morphologies of poly(3‐hexylthiophene):[6,6]phenyl‐C...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2014-01, Vol.4 (2), p.np-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | np |
container_title | Advanced energy materials |
container_volume | 4 |
creator | Kim, Min Kim, Joo-Hyun Choi, Hyun Ho Park, Jong Hwan Jo, Sae Byeok Sim, Myungsun Kim, Jong Soo Jinnai, Hiroshi Park, Yeong Don Cho, Kilwon |
description | Understanding the vertical phase separation of donor and acceptor compounds in organic photovoltaics is requisite for the control of charge transport behavior and the achievement of efficient charge collection. Here, the vertically phase‐separated morphologies of poly(3‐hexylthiophene):[6,6]phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) blend films are examined with transmission electron microtomography, dynamic secondary ion mass spectroscopy, and X‐ray photoelectron spectroscopy. The 3D morphologies of the processed films are analyzed and how the solvent additive causes vertical segregation is determined. The photocurrent–voltage characteristics of the vertically segregated blend films are strongly dependent on the 3D morphological organization of the donor and acceptor compounds in the photoactive layer. This dependence is correlated with asymmetric carrier transport at the buried interface and the air surface in the vertically segregated blend films.
Vertical phase‐separated morphology and device architecture of organic solar cells critically affect the electrical performance. Solvent additive plays a significant role on vertical phase distribution and polymer crystallization, which are related to charge transport at the interface between the active layer and electrodes |
doi_str_mv | 10.1002/aenm.201300612 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770271787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770271787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3032-230ec49afaa6a8f2e152f990859d4d43824d46a3255ecf8ba63f453c827547943</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVeISlSlV86WuPSywV-73j1GaShIaVpUPo7W4B0Tt5t1ajuE_Pd1uihCveCDPbLebzTzXlG8Y3TCKOUfAIf1hFMmKK0Zf1WcsprJsm4kfX2sBX9TnMd4T_ORLaNCnBa7eY8mBWegJ7cYrA9rGAwSb8lN-AWDM-TO9xDIDPs-kp1LKzLtOpfcbyynMbqYsCPfMaSxxQoikjvcQIDk_EDcQNIK879PHsyBIgvYY3hbnFjoI57_fc-Kbx_nX2efysXN1efZdFEaQQUvuaBoZAsWoIbGcmQVt21Lm6rtZCdFw_Ndg-BVhcY2P6EWVlbCNFxVUrVSnBUXY99N8I9bjEmvXTR5FxjQb6NmSlGumGpUlr5_Ib332zDk6TTLdrXPrmXVZFSZ4GMMaPUmuDWEvWZUH6LQhyj0MYoMtCOwcz3u_6PW0_ny-l-2HNmDzX-OLIQHXSuhKv1jeaXl5VJ9qa8vtRBPMxibfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1491900049</pqid></control><display><type>article</type><title>Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer</title><source>Wiley Online Library All Journals</source><creator>Kim, Min ; Kim, Joo-Hyun ; Choi, Hyun Ho ; Park, Jong Hwan ; Jo, Sae Byeok ; Sim, Myungsun ; Kim, Jong Soo ; Jinnai, Hiroshi ; Park, Yeong Don ; Cho, Kilwon</creator><creatorcontrib>Kim, Min ; Kim, Joo-Hyun ; Choi, Hyun Ho ; Park, Jong Hwan ; Jo, Sae Byeok ; Sim, Myungsun ; Kim, Jong Soo ; Jinnai, Hiroshi ; Park, Yeong Don ; Cho, Kilwon</creatorcontrib><description>Understanding the vertical phase separation of donor and acceptor compounds in organic photovoltaics is requisite for the control of charge transport behavior and the achievement of efficient charge collection. Here, the vertically phase‐separated morphologies of poly(3‐hexylthiophene):[6,6]phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) blend films are examined with transmission electron microtomography, dynamic secondary ion mass spectroscopy, and X‐ray photoelectron spectroscopy. The 3D morphologies of the processed films are analyzed and how the solvent additive causes vertical segregation is determined. The photocurrent–voltage characteristics of the vertically segregated blend films are strongly dependent on the 3D morphological organization of the donor and acceptor compounds in the photoactive layer. This dependence is correlated with asymmetric carrier transport at the buried interface and the air surface in the vertically segregated blend films.
Vertical phase‐separated morphology and device architecture of organic solar cells critically affect the electrical performance. Solvent additive plays a significant role on vertical phase distribution and polymer crystallization, which are related to charge transport at the interface between the active layer and electrodes</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201300612</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Additives ; Blends ; Charge transport ; field-effect transistors ; Morphology ; organic solar cells ; Phase separation ; Photovoltaic cells ; Solar cells ; solvent additives ; Solvents ; Spectrum analysis ; vertical phase separation</subject><ispartof>Advanced energy materials, 2014-01, Vol.4 (2), p.np-n/a</ispartof><rights>2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3032-230ec49afaa6a8f2e152f990859d4d43824d46a3255ecf8ba63f453c827547943</citedby><cites>FETCH-LOGICAL-c3032-230ec49afaa6a8f2e152f990859d4d43824d46a3255ecf8ba63f453c827547943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201300612$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201300612$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Kim, Min</creatorcontrib><creatorcontrib>Kim, Joo-Hyun</creatorcontrib><creatorcontrib>Choi, Hyun Ho</creatorcontrib><creatorcontrib>Park, Jong Hwan</creatorcontrib><creatorcontrib>Jo, Sae Byeok</creatorcontrib><creatorcontrib>Sim, Myungsun</creatorcontrib><creatorcontrib>Kim, Jong Soo</creatorcontrib><creatorcontrib>Jinnai, Hiroshi</creatorcontrib><creatorcontrib>Park, Yeong Don</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><title>Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>Understanding the vertical phase separation of donor and acceptor compounds in organic photovoltaics is requisite for the control of charge transport behavior and the achievement of efficient charge collection. Here, the vertically phase‐separated morphologies of poly(3‐hexylthiophene):[6,6]phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) blend films are examined with transmission electron microtomography, dynamic secondary ion mass spectroscopy, and X‐ray photoelectron spectroscopy. The 3D morphologies of the processed films are analyzed and how the solvent additive causes vertical segregation is determined. The photocurrent–voltage characteristics of the vertically segregated blend films are strongly dependent on the 3D morphological organization of the donor and acceptor compounds in the photoactive layer. This dependence is correlated with asymmetric carrier transport at the buried interface and the air surface in the vertically segregated blend films.
Vertical phase‐separated morphology and device architecture of organic solar cells critically affect the electrical performance. Solvent additive plays a significant role on vertical phase distribution and polymer crystallization, which are related to charge transport at the interface between the active layer and electrodes</description><subject>Additives</subject><subject>Blends</subject><subject>Charge transport</subject><subject>field-effect transistors</subject><subject>Morphology</subject><subject>organic solar cells</subject><subject>Phase separation</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>solvent additives</subject><subject>Solvents</subject><subject>Spectrum analysis</subject><subject>vertical phase separation</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc1vEzEQxVeISlSlV86WuPSywV-73j1GaShIaVpUPo7W4B0Tt5t1ajuE_Pd1uihCveCDPbLebzTzXlG8Y3TCKOUfAIf1hFMmKK0Zf1WcsprJsm4kfX2sBX9TnMd4T_ORLaNCnBa7eY8mBWegJ7cYrA9rGAwSb8lN-AWDM-TO9xDIDPs-kp1LKzLtOpfcbyynMbqYsCPfMaSxxQoikjvcQIDk_EDcQNIK879PHsyBIgvYY3hbnFjoI57_fc-Kbx_nX2efysXN1efZdFEaQQUvuaBoZAsWoIbGcmQVt21Lm6rtZCdFw_Ndg-BVhcY2P6EWVlbCNFxVUrVSnBUXY99N8I9bjEmvXTR5FxjQb6NmSlGumGpUlr5_Ib332zDk6TTLdrXPrmXVZFSZ4GMMaPUmuDWEvWZUH6LQhyj0MYoMtCOwcz3u_6PW0_ny-l-2HNmDzX-OLIQHXSuhKv1jeaXl5VJ9qa8vtRBPMxibfg</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Kim, Min</creator><creator>Kim, Joo-Hyun</creator><creator>Choi, Hyun Ho</creator><creator>Park, Jong Hwan</creator><creator>Jo, Sae Byeok</creator><creator>Sim, Myungsun</creator><creator>Kim, Jong Soo</creator><creator>Jinnai, Hiroshi</creator><creator>Park, Yeong Don</creator><creator>Cho, Kilwon</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer</title><author>Kim, Min ; Kim, Joo-Hyun ; Choi, Hyun Ho ; Park, Jong Hwan ; Jo, Sae Byeok ; Sim, Myungsun ; Kim, Jong Soo ; Jinnai, Hiroshi ; Park, Yeong Don ; Cho, Kilwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3032-230ec49afaa6a8f2e152f990859d4d43824d46a3255ecf8ba63f453c827547943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Additives</topic><topic>Blends</topic><topic>Charge transport</topic><topic>field-effect transistors</topic><topic>Morphology</topic><topic>organic solar cells</topic><topic>Phase separation</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>solvent additives</topic><topic>Solvents</topic><topic>Spectrum analysis</topic><topic>vertical phase separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Min</creatorcontrib><creatorcontrib>Kim, Joo-Hyun</creatorcontrib><creatorcontrib>Choi, Hyun Ho</creatorcontrib><creatorcontrib>Park, Jong Hwan</creatorcontrib><creatorcontrib>Jo, Sae Byeok</creatorcontrib><creatorcontrib>Sim, Myungsun</creatorcontrib><creatorcontrib>Kim, Jong Soo</creatorcontrib><creatorcontrib>Jinnai, Hiroshi</creatorcontrib><creatorcontrib>Park, Yeong Don</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Min</au><au>Kim, Joo-Hyun</au><au>Choi, Hyun Ho</au><au>Park, Jong Hwan</au><au>Jo, Sae Byeok</au><au>Sim, Myungsun</au><au>Kim, Jong Soo</au><au>Jinnai, Hiroshi</au><au>Park, Yeong Don</au><au>Cho, Kilwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2014-01</date><risdate>2014</risdate><volume>4</volume><issue>2</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Understanding the vertical phase separation of donor and acceptor compounds in organic photovoltaics is requisite for the control of charge transport behavior and the achievement of efficient charge collection. Here, the vertically phase‐separated morphologies of poly(3‐hexylthiophene):[6,6]phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) blend films are examined with transmission electron microtomography, dynamic secondary ion mass spectroscopy, and X‐ray photoelectron spectroscopy. The 3D morphologies of the processed films are analyzed and how the solvent additive causes vertical segregation is determined. The photocurrent–voltage characteristics of the vertically segregated blend films are strongly dependent on the 3D morphological organization of the donor and acceptor compounds in the photoactive layer. This dependence is correlated with asymmetric carrier transport at the buried interface and the air surface in the vertically segregated blend films.
Vertical phase‐separated morphology and device architecture of organic solar cells critically affect the electrical performance. Solvent additive plays a significant role on vertical phase distribution and polymer crystallization, which are related to charge transport at the interface between the active layer and electrodes</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201300612</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2014-01, Vol.4 (2), p.np-n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770271787 |
source | Wiley Online Library All Journals |
subjects | Additives Blends Charge transport field-effect transistors Morphology organic solar cells Phase separation Photovoltaic cells Solar cells solvent additives Solvents Spectrum analysis vertical phase separation |
title | Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Performance%20of%20Organic%20Solar%20Cells%20with%20Additive-Assisted%20Vertical%20Phase%20Separation%20in%20the%20Photoactive%20Layer&rft.jtitle=Advanced%20energy%20materials&rft.au=Kim,%20Min&rft.date=2014-01&rft.volume=4&rft.issue=2&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201300612&rft_dat=%3Cproquest_cross%3E1770271787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1491900049&rft_id=info:pmid/&rfr_iscdi=true |