The Wigner solution and QCD phase transitions in a modified PNJL model

By employing some modification to the widely used two-flavor Polyakov-loop extended Nambu–Jona–Lasinio (PNJL) model, we discuss the Wigner solution of the quark gap equation at finite temperature and zero quark chemical potential beyond the chiral limit, and then we try to explore its influence on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2014-02, Vol.74 (2), p.2782-9, Article 2782
Hauptverfasser: Cui, Zhu-fang, Shi, Chao, Sun, Wei-min, Wang, Yong-long, Zong, Hong-shi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2
container_start_page 2782
container_title The European physical journal. C, Particles and fields
container_volume 74
creator Cui, Zhu-fang
Shi, Chao
Sun, Wei-min
Wang, Yong-long
Zong, Hong-shi
description By employing some modification to the widely used two-flavor Polyakov-loop extended Nambu–Jona–Lasinio (PNJL) model, we discuss the Wigner solution of the quark gap equation at finite temperature and zero quark chemical potential beyond the chiral limit, and then we try to explore its influence on the chiral and deconfinement phase transitions of QCD at finite temperature and zero chemical potential. The discovery of the coexistence of the Nambu and the Wigner solutions of the quark gap equation with nonzero current quark mass at zero temperature and zero chemical potential, as well as their evolutions with temperature, is very interesting for the studies of the phase transitions of QCD. According to our results, the chiral phase transition might be of first order (while the deconfinement phase transition is still a crossover, as in the normal PNJL model), and the corresponding phase transition temperature is lower than that of the deconfinement phase transition, instead of coinciding with each other, which are not the same as the conclusions obtained from the normal PNJL model. In addition, we also discuss the sensibility of our final results on the choice of model parameters.
doi_str_mv 10.1140/epjc/s10052-014-2782-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770270579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A369728855</galeid><sourcerecordid>A369728855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-ae18477b57b9f20d6cfc7667e5e5b1d56d50530e99936df1e292d80c8564646d3</originalsourceid><addsrcrecordid>eNp9kc1O3DAURqMKpFLgFZClbtpFGNvxT7JEU6CgEbR0KpaWx74ZPMrYg51Iw9vXUVBVukBe2L73HOtaX1GcEXxOCMMz2G3MLBGMOS0xYSWVNS33H4ojwipWilw--Htm7GPxKaUNxpgyXB8VV8snQI9u7SGiFLqhd8Ej7S36Of-Gdk86Aeqj9smNjYRcbqJtsK51YNGPu9vFeIPupDhsdZfg9HU_Ln5fXS7n38vF_fXN_GJRGlbzvtRAaiblistV01JshWmNFEICB74ilgvLMa8wNE1TCdsSoA21NTY1FywvWx0XX6Z3dzE8D5B6tXXJQNdpD2FIikiJqcRcNhn9_B-6CUP0eTpFBKeykbTmmTqfqLXuQDnfhvxdk5eFrTPBQ-ty_aISI17zUfj6RshMD_t-rYeU1M2vh7esmFgTQ0oRWrWLbqvjiyJYjdmpMTs1ZadydmrMTu2zKCcxZcGvIf4z-_vmH28-nNc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652797285</pqid></control><display><type>article</type><title>The Wigner solution and QCD phase transitions in a modified PNJL model</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cui, Zhu-fang ; Shi, Chao ; Sun, Wei-min ; Wang, Yong-long ; Zong, Hong-shi</creator><creatorcontrib>Cui, Zhu-fang ; Shi, Chao ; Sun, Wei-min ; Wang, Yong-long ; Zong, Hong-shi</creatorcontrib><description>By employing some modification to the widely used two-flavor Polyakov-loop extended Nambu–Jona–Lasinio (PNJL) model, we discuss the Wigner solution of the quark gap equation at finite temperature and zero quark chemical potential beyond the chiral limit, and then we try to explore its influence on the chiral and deconfinement phase transitions of QCD at finite temperature and zero chemical potential. The discovery of the coexistence of the Nambu and the Wigner solutions of the quark gap equation with nonzero current quark mass at zero temperature and zero chemical potential, as well as their evolutions with temperature, is very interesting for the studies of the phase transitions of QCD. According to our results, the chiral phase transition might be of first order (while the deconfinement phase transition is still a crossover, as in the normal PNJL model), and the corresponding phase transition temperature is lower than that of the deconfinement phase transition, instead of coinciding with each other, which are not the same as the conclusions obtained from the normal PNJL model. In addition, we also discuss the sensibility of our final results on the choice of model parameters.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-014-2782-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Chemical potential ; Crossovers ; Elementary Particles ; Evolution ; Hadrons ; Heavy Ions ; Mathematical analysis ; Mathematical models ; Measurement Science and Instrumentation ; Nuclear Energy ; Nuclear Physics ; Phase transformations ; Physics ; Physics and Astronomy ; Quantum chromodynamics ; Quantum Field Theories ; Quantum Field Theory ; Quarks ; Regular Article - Theoretical Physics ; String Theory</subject><ispartof>The European physical journal. C, Particles and fields, 2014-02, Vol.74 (2), p.2782-9, Article 2782</ispartof><rights>The Author(s) 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-ae18477b57b9f20d6cfc7667e5e5b1d56d50530e99936df1e292d80c8564646d3</citedby><cites>FETCH-LOGICAL-c485t-ae18477b57b9f20d6cfc7667e5e5b1d56d50530e99936df1e292d80c8564646d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjc/s10052-014-2782-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjc/s10052-014-2782-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27923,27924,41119,41487,42188,42556,51318,51575</link.rule.ids></links><search><creatorcontrib>Cui, Zhu-fang</creatorcontrib><creatorcontrib>Shi, Chao</creatorcontrib><creatorcontrib>Sun, Wei-min</creatorcontrib><creatorcontrib>Wang, Yong-long</creatorcontrib><creatorcontrib>Zong, Hong-shi</creatorcontrib><title>The Wigner solution and QCD phase transitions in a modified PNJL model</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>By employing some modification to the widely used two-flavor Polyakov-loop extended Nambu–Jona–Lasinio (PNJL) model, we discuss the Wigner solution of the quark gap equation at finite temperature and zero quark chemical potential beyond the chiral limit, and then we try to explore its influence on the chiral and deconfinement phase transitions of QCD at finite temperature and zero chemical potential. The discovery of the coexistence of the Nambu and the Wigner solutions of the quark gap equation with nonzero current quark mass at zero temperature and zero chemical potential, as well as their evolutions with temperature, is very interesting for the studies of the phase transitions of QCD. According to our results, the chiral phase transition might be of first order (while the deconfinement phase transition is still a crossover, as in the normal PNJL model), and the corresponding phase transition temperature is lower than that of the deconfinement phase transition, instead of coinciding with each other, which are not the same as the conclusions obtained from the normal PNJL model. In addition, we also discuss the sensibility of our final results on the choice of model parameters.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Chemical potential</subject><subject>Crossovers</subject><subject>Elementary Particles</subject><subject>Evolution</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Measurement Science and Instrumentation</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Phase transformations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum chromodynamics</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quarks</subject><subject>Regular Article - Theoretical Physics</subject><subject>String Theory</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1O3DAURqMKpFLgFZClbtpFGNvxT7JEU6CgEbR0KpaWx74ZPMrYg51Iw9vXUVBVukBe2L73HOtaX1GcEXxOCMMz2G3MLBGMOS0xYSWVNS33H4ojwipWilw--Htm7GPxKaUNxpgyXB8VV8snQI9u7SGiFLqhd8Ej7S36Of-Gdk86Aeqj9smNjYRcbqJtsK51YNGPu9vFeIPupDhsdZfg9HU_Ln5fXS7n38vF_fXN_GJRGlbzvtRAaiblistV01JshWmNFEICB74ilgvLMa8wNE1TCdsSoA21NTY1FywvWx0XX6Z3dzE8D5B6tXXJQNdpD2FIikiJqcRcNhn9_B-6CUP0eTpFBKeykbTmmTqfqLXuQDnfhvxdk5eFrTPBQ-ty_aISI17zUfj6RshMD_t-rYeU1M2vh7esmFgTQ0oRWrWLbqvjiyJYjdmpMTs1ZadydmrMTu2zKCcxZcGvIf4z-_vmH28-nNc</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Cui, Zhu-fang</creator><creator>Shi, Chao</creator><creator>Sun, Wei-min</creator><creator>Wang, Yong-long</creator><creator>Zong, Hong-shi</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20140201</creationdate><title>The Wigner solution and QCD phase transitions in a modified PNJL model</title><author>Cui, Zhu-fang ; Shi, Chao ; Sun, Wei-min ; Wang, Yong-long ; Zong, Hong-shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-ae18477b57b9f20d6cfc7667e5e5b1d56d50530e99936df1e292d80c8564646d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Chemical potential</topic><topic>Crossovers</topic><topic>Elementary Particles</topic><topic>Evolution</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Measurement Science and Instrumentation</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Phase transformations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum chromodynamics</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quarks</topic><topic>Regular Article - Theoretical Physics</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Zhu-fang</creatorcontrib><creatorcontrib>Shi, Chao</creatorcontrib><creatorcontrib>Sun, Wei-min</creatorcontrib><creatorcontrib>Wang, Yong-long</creatorcontrib><creatorcontrib>Zong, Hong-shi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Zhu-fang</au><au>Shi, Chao</au><au>Sun, Wei-min</au><au>Wang, Yong-long</au><au>Zong, Hong-shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Wigner solution and QCD phase transitions in a modified PNJL model</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>74</volume><issue>2</issue><spage>2782</spage><epage>9</epage><pages>2782-9</pages><artnum>2782</artnum><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>By employing some modification to the widely used two-flavor Polyakov-loop extended Nambu–Jona–Lasinio (PNJL) model, we discuss the Wigner solution of the quark gap equation at finite temperature and zero quark chemical potential beyond the chiral limit, and then we try to explore its influence on the chiral and deconfinement phase transitions of QCD at finite temperature and zero chemical potential. The discovery of the coexistence of the Nambu and the Wigner solutions of the quark gap equation with nonzero current quark mass at zero temperature and zero chemical potential, as well as their evolutions with temperature, is very interesting for the studies of the phase transitions of QCD. According to our results, the chiral phase transition might be of first order (while the deconfinement phase transition is still a crossover, as in the normal PNJL model), and the corresponding phase transition temperature is lower than that of the deconfinement phase transition, instead of coinciding with each other, which are not the same as the conclusions obtained from the normal PNJL model. In addition, we also discuss the sensibility of our final results on the choice of model parameters.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-014-2782-x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2014-02, Vol.74 (2), p.2782-9, Article 2782
issn 1434-6044
1434-6052
language eng
recordid cdi_proquest_miscellaneous_1770270579
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; SpringerLink Journals - AutoHoldings
subjects Astronomy
Astrophysics and Cosmology
Chemical potential
Crossovers
Elementary Particles
Evolution
Hadrons
Heavy Ions
Mathematical analysis
Mathematical models
Measurement Science and Instrumentation
Nuclear Energy
Nuclear Physics
Phase transformations
Physics
Physics and Astronomy
Quantum chromodynamics
Quantum Field Theories
Quantum Field Theory
Quarks
Regular Article - Theoretical Physics
String Theory
title The Wigner solution and QCD phase transitions in a modified PNJL model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Wigner%20solution%20and%20QCD%20phase%20transitions%20in%20a%20modified%20PNJL%20model&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Cui,%20Zhu-fang&rft.date=2014-02-01&rft.volume=74&rft.issue=2&rft.spage=2782&rft.epage=9&rft.pages=2782-9&rft.artnum=2782&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-014-2782-x&rft_dat=%3Cgale_proqu%3EA369728855%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652797285&rft_id=info:pmid/&rft_galeid=A369728855&rfr_iscdi=true