A genetic resampling particle filter for freeway traffic-state estimation

On-line estimation of the state of traffic based on data sampled by electronic detectors is important for intelligent traffic management and control. Because a nonlinear feature exists in the traffic state, and because particle filters have good characteristics when it comes to solving the nonlinear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2012-06, Vol.21 (6), p.595-599
1. Verfasser: 毕军 关伟 齐龙涛
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 599
container_issue 6
container_start_page 595
container_title Chinese physics B
container_volume 21
creator 毕军 关伟 齐龙涛
description On-line estimation of the state of traffic based on data sampled by electronic detectors is important for intelligent traffic management and control. Because a nonlinear feature exists in the traffic state, and because particle filters have good characteristics when it comes to solving the nonlinear problem, a genetic resampling particle filter is proposed to estimate the state of freeway traffic. In this paper, a freeway section of the northern third ring road in the city of Beijing in China is considered as the experimental object. By analysing the traffic-state characteristics of the freeway, the traffic is modeled based on the second-order validated macroscopic traffic flow model. In order to solve the particle degeneration issue in the performance of the particle filter, a genetic mechanism is introduced into the resampling process. The realization of a genetic particle filter for freeway traffic-state estimation is discussed in detail, and the filter estimation performance is validated and evaluated by the achieved experimental data.
doi_str_mv 10.1088/1674-1056/21/6/068901
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1768576170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>42757189</cqvip_id><sourcerecordid>1768576170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-a415a8dc19287f7b2b90f5d081a541745524bc5787a593d63dbcc63a8c4c1e2b3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKs_QVhvXtbN5HuPpfhRKHjRc8hmk7qy3d0mKdJ_b0qlZwlDYHjeGeZB6B7wE2ClKhCSlYC5qAhUosJC1Rgu0IxgrkqqKLtEszNzjW5i_MZYACZ0hlaLYuMGlzpbBBfNduq7YVNMJuRO7wrf9cmFwo-5gnM_5lCkYLzvbBmTSa5wMXVbk7pxuEVX3vTR3f39c_T58vyxfCvX76-r5WJdWsp4Kg0DblRroSZKetmQpsaet1iB4Qwk45ywxnKppOE1bQVtG2sFNcoyC440dI4eT3OnMO72eb_edtG6vjeDG_dRgxSKSwES_wPllGOVX0b5CbVhjDE4r6eQDwsHDVgfLeujQX00qAlooU-Wc-7hL_c1DptdlncOMiK5BFXTX_Q1eos</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753508080</pqid></control><display><type>article</type><title>A genetic resampling particle filter for freeway traffic-state estimation</title><source>IOP Publishing Journals</source><creator>毕军 关伟 齐龙涛</creator><creatorcontrib>毕军 关伟 齐龙涛</creatorcontrib><description>On-line estimation of the state of traffic based on data sampled by electronic detectors is important for intelligent traffic management and control. Because a nonlinear feature exists in the traffic state, and because particle filters have good characteristics when it comes to solving the nonlinear problem, a genetic resampling particle filter is proposed to estimate the state of freeway traffic. In this paper, a freeway section of the northern third ring road in the city of Beijing in China is considered as the experimental object. By analysing the traffic-state characteristics of the freeway, the traffic is modeled based on the second-order validated macroscopic traffic flow model. In order to solve the particle degeneration issue in the performance of the particle filter, a genetic mechanism is introduced into the resampling process. The realization of a genetic particle filter for freeway traffic-state estimation is discussed in detail, and the filter estimation performance is validated and evaluated by the achieved experimental data.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/21/6/068901</identifier><language>eng</language><subject>Electronics ; Freeways ; Genetics ; Nonlinearity ; On-line systems ; Resampling ; Roads ; Traffic engineering ; Traffic flow ; 智能交通管理 ; 状态估计 ; 粒子滤波器 ; 粒子过滤器 ; 遗传机制 ; 重采样 ; 颗粒过滤器 ; 高速公路交通</subject><ispartof>Chinese physics B, 2012-06, Vol.21 (6), p.595-599</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-a415a8dc19287f7b2b90f5d081a541745524bc5787a593d63dbcc63a8c4c1e2b3</citedby><cites>FETCH-LOGICAL-c345t-a415a8dc19287f7b2b90f5d081a541745524bc5787a593d63dbcc63a8c4c1e2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>毕军 关伟 齐龙涛</creatorcontrib><title>A genetic resampling particle filter for freeway traffic-state estimation</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>On-line estimation of the state of traffic based on data sampled by electronic detectors is important for intelligent traffic management and control. Because a nonlinear feature exists in the traffic state, and because particle filters have good characteristics when it comes to solving the nonlinear problem, a genetic resampling particle filter is proposed to estimate the state of freeway traffic. In this paper, a freeway section of the northern third ring road in the city of Beijing in China is considered as the experimental object. By analysing the traffic-state characteristics of the freeway, the traffic is modeled based on the second-order validated macroscopic traffic flow model. In order to solve the particle degeneration issue in the performance of the particle filter, a genetic mechanism is introduced into the resampling process. The realization of a genetic particle filter for freeway traffic-state estimation is discussed in detail, and the filter estimation performance is validated and evaluated by the achieved experimental data.</description><subject>Electronics</subject><subject>Freeways</subject><subject>Genetics</subject><subject>Nonlinearity</subject><subject>On-line systems</subject><subject>Resampling</subject><subject>Roads</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><subject>智能交通管理</subject><subject>状态估计</subject><subject>粒子滤波器</subject><subject>粒子过滤器</subject><subject>遗传机制</subject><subject>重采样</subject><subject>颗粒过滤器</subject><subject>高速公路交通</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKs_QVhvXtbN5HuPpfhRKHjRc8hmk7qy3d0mKdJ_b0qlZwlDYHjeGeZB6B7wE2ClKhCSlYC5qAhUosJC1Rgu0IxgrkqqKLtEszNzjW5i_MZYACZ0hlaLYuMGlzpbBBfNduq7YVNMJuRO7wrf9cmFwo-5gnM_5lCkYLzvbBmTSa5wMXVbk7pxuEVX3vTR3f39c_T58vyxfCvX76-r5WJdWsp4Kg0DblRroSZKetmQpsaet1iB4Qwk45ywxnKppOE1bQVtG2sFNcoyC440dI4eT3OnMO72eb_edtG6vjeDG_dRgxSKSwES_wPllGOVX0b5CbVhjDE4r6eQDwsHDVgfLeujQX00qAlooU-Wc-7hL_c1DptdlncOMiK5BFXTX_Q1eos</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>毕军 关伟 齐龙涛</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20120601</creationdate><title>A genetic resampling particle filter for freeway traffic-state estimation</title><author>毕军 关伟 齐龙涛</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-a415a8dc19287f7b2b90f5d081a541745524bc5787a593d63dbcc63a8c4c1e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Electronics</topic><topic>Freeways</topic><topic>Genetics</topic><topic>Nonlinearity</topic><topic>On-line systems</topic><topic>Resampling</topic><topic>Roads</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><topic>智能交通管理</topic><topic>状态估计</topic><topic>粒子滤波器</topic><topic>粒子过滤器</topic><topic>遗传机制</topic><topic>重采样</topic><topic>颗粒过滤器</topic><topic>高速公路交通</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>毕军 关伟 齐龙涛</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>毕军 关伟 齐龙涛</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A genetic resampling particle filter for freeway traffic-state estimation</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>21</volume><issue>6</issue><spage>595</spage><epage>599</epage><pages>595-599</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>On-line estimation of the state of traffic based on data sampled by electronic detectors is important for intelligent traffic management and control. Because a nonlinear feature exists in the traffic state, and because particle filters have good characteristics when it comes to solving the nonlinear problem, a genetic resampling particle filter is proposed to estimate the state of freeway traffic. In this paper, a freeway section of the northern third ring road in the city of Beijing in China is considered as the experimental object. By analysing the traffic-state characteristics of the freeway, the traffic is modeled based on the second-order validated macroscopic traffic flow model. In order to solve the particle degeneration issue in the performance of the particle filter, a genetic mechanism is introduced into the resampling process. The realization of a genetic particle filter for freeway traffic-state estimation is discussed in detail, and the filter estimation performance is validated and evaluated by the achieved experimental data.</abstract><doi>10.1088/1674-1056/21/6/068901</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2012-06, Vol.21 (6), p.595-599
issn 1674-1056
2058-3834
1741-4199
language eng
recordid cdi_proquest_miscellaneous_1768576170
source IOP Publishing Journals
subjects Electronics
Freeways
Genetics
Nonlinearity
On-line systems
Resampling
Roads
Traffic engineering
Traffic flow
智能交通管理
状态估计
粒子滤波器
粒子过滤器
遗传机制
重采样
颗粒过滤器
高速公路交通
title A genetic resampling particle filter for freeway traffic-state estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T07%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20genetic%20resampling%20particle%20filter%20for%20freeway%20traffic-state%20estimation&rft.jtitle=Chinese%20physics%20B&rft.au=%E6%AF%95%E5%86%9B%20%E5%85%B3%E4%BC%9F%20%E9%BD%90%E9%BE%99%E6%B6%9B&rft.date=2012-06-01&rft.volume=21&rft.issue=6&rft.spage=595&rft.epage=599&rft.pages=595-599&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/21/6/068901&rft_dat=%3Cproquest_cross%3E1768576170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753508080&rft_id=info:pmid/&rft_cqvip_id=42757189&rfr_iscdi=true