Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome
Phytases are enzymes degrading phytic acid and thereby releasing inorganic phosphate. While the phytases reported to date are majorly from culturable microorganisms, the fast-growing quantity of publicly available metagenomic data generated in the last decade has enabled bioinformatic mining of phyt...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2016-03, Vol.100 (5), p.2225-2241 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2241 |
---|---|
container_issue | 5 |
container_start_page | 2225 |
container_title | Applied microbiology and biotechnology |
container_volume | 100 |
creator | Tan, Hao Wu, Xiang Xie, Liyuan Huang, Zhongqian Peng, Weihong Gan, Bingcheng |
description | Phytases are enzymes degrading phytic acid and thereby releasing inorganic phosphate. While the phytases reported to date are majorly from culturable microorganisms, the fast-growing quantity of publicly available metagenomic data generated in the last decade has enabled bioinformatic mining of phytases in numerous data mines derived from a variety of ecosystems throughout the world. In this study, we are interested in the histidine acid phosphatase (HAP) family phytases present in insect-cultivated fungus gardens. Using bioinformatic approaches, 11 putative HAP phytase genes were initially screened from 18 publicly available metagenomes of fungus gardens and were further overexpressed in Escherichia coli. One phytase from a south pine beetle fungus garden showed the highest activity and was then chosen for further study. Biochemical characterization showed that the phytase is mesophilic but possesses strong ability to withstand high temperatures. To our knowledge, it has the longest half-life time at 100 °C (27 min) and at 80 °C (2.1 h) as compared to all the thermostable phytases publicly reported to date. After 100 °C incubation for 15 min, more than 93 % of the activity was retained. The activity was 3102 μmol P/min/mg at 37 °C and 4135 μmol P/min/mg at 52.5 °C, which is higher than all the known thermostable phytases. For the high activity level demonstrated at mesophilic temperatures as well as the high resilience to high temperatures, the phytase might be promising for potential application as an additive enzyme in animal feed. |
doi_str_mv | 10.1007/s00253-015-7097-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1768575030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A443488422</galeid><sourcerecordid>A443488422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-f6a0242e722e433e7788933aeb5de5cd298dbb39b4198bbfb44656cdb37efb0d3</originalsourceid><addsrcrecordid>eNqNktuK1TAUhosoznb0AbzRgjd60TGnJunlMHjYMCA4znVI05XuDG2zTVKY7TP40KZ2PGwRkVwE1vr-P1mLvyieYnSGERKvI0KkphXCdSVQI6rmXrHBjJIKcczuFxuERe7UjTwpHsV4gxAmkvOHxQnhNeVSsE3xddvBlJx1Rifnp1JPXWl2OmiTILgva9HbUpcjRL_fucGZcr87JB2h3Ll-NxzKADGXs02Z_PdalWDcQ9Bpzq3SBj9mvZ2nfo5Vr0N-sdQxeuN0gi4bJ93D5Ed4XDyweojw5O4-La7fvvl08b66_PBue3F-WRlORaos14gwAoIQYJSCEFI2lGpo6w5q05FGdm1Lm5bhRratbRnjNTddSwXYFnX0tHi5-u6D_zxDTGp00cAw6An8HBUWXNaiRhT9D8oJp5KzjL74A73xc5jyIAtVU5L_SX5RvR5Aucn6lJe9mKpzxiiTkpGFOvsLlU8HozN-Auty_Ujw6kiQmQS3qddzjGp79fGYxStrgo8xgFX74EYdDgojtQRLrcFSOVhqCZZqsubZ3XBzO0L3U_EjSRkgKxBza-oh_Db9P1yfryKrvdJ9cFFdXxGEeY4qysti9Bu0jeHK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765327782</pqid></control><display><type>article</type><title>Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tan, Hao ; Wu, Xiang ; Xie, Liyuan ; Huang, Zhongqian ; Peng, Weihong ; Gan, Bingcheng</creator><creatorcontrib>Tan, Hao ; Wu, Xiang ; Xie, Liyuan ; Huang, Zhongqian ; Peng, Weihong ; Gan, Bingcheng</creatorcontrib><description>Phytases are enzymes degrading phytic acid and thereby releasing inorganic phosphate. While the phytases reported to date are majorly from culturable microorganisms, the fast-growing quantity of publicly available metagenomic data generated in the last decade has enabled bioinformatic mining of phytases in numerous data mines derived from a variety of ecosystems throughout the world. In this study, we are interested in the histidine acid phosphatase (HAP) family phytases present in insect-cultivated fungus gardens. Using bioinformatic approaches, 11 putative HAP phytase genes were initially screened from 18 publicly available metagenomes of fungus gardens and were further overexpressed in Escherichia coli. One phytase from a south pine beetle fungus garden showed the highest activity and was then chosen for further study. Biochemical characterization showed that the phytase is mesophilic but possesses strong ability to withstand high temperatures. To our knowledge, it has the longest half-life time at 100 °C (27 min) and at 80 °C (2.1 h) as compared to all the thermostable phytases publicly reported to date. After 100 °C incubation for 15 min, more than 93 % of the activity was retained. The activity was 3102 μmol P/min/mg at 37 °C and 4135 μmol P/min/mg at 52.5 °C, which is higher than all the known thermostable phytases. For the high activity level demonstrated at mesophilic temperatures as well as the high resilience to high temperatures, the phytase might be promising for potential application as an additive enzyme in animal feed.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-015-7097-9</identifier><identifier>PMID: 26536874</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>6-Phytase - chemistry ; 6-Phytase - genetics ; 6-Phytase - metabolism ; acid phosphatase ; Animals ; bioinformatics ; Biomedical and Life Sciences ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Cloning, Molecular ; Coleoptera ; Crystal structure ; Data mining ; E coli ; ecosystems ; Enzyme Stability ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Feeds ; Fungi ; Fungi - enzymology ; Fungi - genetics ; Fungi - growth & development ; fungus gardens ; Gardens & gardening ; Gene Expression ; gene overexpression ; Genes ; half life ; High temperature ; histidine ; Hot Temperature ; Insecta - microbiology ; Kinetics ; Life Sciences ; Metagenome ; metagenomics ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Observations ; Peptides ; Phosphatase ; Phosphatases ; phosphates ; Phylogenetics ; Physiological aspects ; phytases ; phytic acid ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Statistical analysis ; Taxonomy ; temperature ; thermal stability</subject><ispartof>Applied microbiology and biotechnology, 2016-03, Vol.100 (5), p.2225-2241</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-f6a0242e722e433e7788933aeb5de5cd298dbb39b4198bbfb44656cdb37efb0d3</citedby><cites>FETCH-LOGICAL-c637t-f6a0242e722e433e7788933aeb5de5cd298dbb39b4198bbfb44656cdb37efb0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-015-7097-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-015-7097-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26536874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Wu, Xiang</creatorcontrib><creatorcontrib>Xie, Liyuan</creatorcontrib><creatorcontrib>Huang, Zhongqian</creatorcontrib><creatorcontrib>Peng, Weihong</creatorcontrib><creatorcontrib>Gan, Bingcheng</creatorcontrib><title>Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Phytases are enzymes degrading phytic acid and thereby releasing inorganic phosphate. While the phytases reported to date are majorly from culturable microorganisms, the fast-growing quantity of publicly available metagenomic data generated in the last decade has enabled bioinformatic mining of phytases in numerous data mines derived from a variety of ecosystems throughout the world. In this study, we are interested in the histidine acid phosphatase (HAP) family phytases present in insect-cultivated fungus gardens. Using bioinformatic approaches, 11 putative HAP phytase genes were initially screened from 18 publicly available metagenomes of fungus gardens and were further overexpressed in Escherichia coli. One phytase from a south pine beetle fungus garden showed the highest activity and was then chosen for further study. Biochemical characterization showed that the phytase is mesophilic but possesses strong ability to withstand high temperatures. To our knowledge, it has the longest half-life time at 100 °C (27 min) and at 80 °C (2.1 h) as compared to all the thermostable phytases publicly reported to date. After 100 °C incubation for 15 min, more than 93 % of the activity was retained. The activity was 3102 μmol P/min/mg at 37 °C and 4135 μmol P/min/mg at 52.5 °C, which is higher than all the known thermostable phytases. For the high activity level demonstrated at mesophilic temperatures as well as the high resilience to high temperatures, the phytase might be promising for potential application as an additive enzyme in animal feed.</description><subject>6-Phytase - chemistry</subject><subject>6-Phytase - genetics</subject><subject>6-Phytase - metabolism</subject><subject>acid phosphatase</subject><subject>Animals</subject><subject>bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Cloning, Molecular</subject><subject>Coleoptera</subject><subject>Crystal structure</subject><subject>Data mining</subject><subject>E coli</subject><subject>ecosystems</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Feeds</subject><subject>Fungi</subject><subject>Fungi - enzymology</subject><subject>Fungi - genetics</subject><subject>Fungi - growth & development</subject><subject>fungus gardens</subject><subject>Gardens & gardening</subject><subject>Gene Expression</subject><subject>gene overexpression</subject><subject>Genes</subject><subject>half life</subject><subject>High temperature</subject><subject>histidine</subject><subject>Hot Temperature</subject><subject>Insecta - microbiology</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Metagenome</subject><subject>metagenomics</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Observations</subject><subject>Peptides</subject><subject>Phosphatase</subject><subject>Phosphatases</subject><subject>phosphates</subject><subject>Phylogenetics</subject><subject>Physiological aspects</subject><subject>phytases</subject><subject>phytic acid</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Statistical analysis</subject><subject>Taxonomy</subject><subject>temperature</subject><subject>thermal stability</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNktuK1TAUhosoznb0AbzRgjd60TGnJunlMHjYMCA4znVI05XuDG2zTVKY7TP40KZ2PGwRkVwE1vr-P1mLvyieYnSGERKvI0KkphXCdSVQI6rmXrHBjJIKcczuFxuERe7UjTwpHsV4gxAmkvOHxQnhNeVSsE3xddvBlJx1Rifnp1JPXWl2OmiTILgva9HbUpcjRL_fucGZcr87JB2h3Ll-NxzKADGXs02Z_PdalWDcQ9Bpzq3SBj9mvZ2nfo5Vr0N-sdQxeuN0gi4bJ93D5Ed4XDyweojw5O4-La7fvvl08b66_PBue3F-WRlORaos14gwAoIQYJSCEFI2lGpo6w5q05FGdm1Lm5bhRratbRnjNTddSwXYFnX0tHi5-u6D_zxDTGp00cAw6An8HBUWXNaiRhT9D8oJp5KzjL74A73xc5jyIAtVU5L_SX5RvR5Aucn6lJe9mKpzxiiTkpGFOvsLlU8HozN-Auty_Ujw6kiQmQS3qddzjGp79fGYxStrgo8xgFX74EYdDgojtQRLrcFSOVhqCZZqsubZ3XBzO0L3U_EjSRkgKxBza-oh_Db9P1yfryKrvdJ9cFFdXxGEeY4qysti9Bu0jeHK</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Tan, Hao</creator><creator>Wu, Xiang</creator><creator>Xie, Liyuan</creator><creator>Huang, Zhongqian</creator><creator>Peng, Weihong</creator><creator>Gan, Bingcheng</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20160301</creationdate><title>Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome</title><author>Tan, Hao ; Wu, Xiang ; Xie, Liyuan ; Huang, Zhongqian ; Peng, Weihong ; Gan, Bingcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-f6a0242e722e433e7788933aeb5de5cd298dbb39b4198bbfb44656cdb37efb0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>6-Phytase - chemistry</topic><topic>6-Phytase - genetics</topic><topic>6-Phytase - metabolism</topic><topic>acid phosphatase</topic><topic>Animals</topic><topic>bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Cloning, Molecular</topic><topic>Coleoptera</topic><topic>Crystal structure</topic><topic>Data mining</topic><topic>E coli</topic><topic>ecosystems</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Feeds</topic><topic>Fungi</topic><topic>Fungi - enzymology</topic><topic>Fungi - genetics</topic><topic>Fungi - growth & development</topic><topic>fungus gardens</topic><topic>Gardens & gardening</topic><topic>Gene Expression</topic><topic>gene overexpression</topic><topic>Genes</topic><topic>half life</topic><topic>High temperature</topic><topic>histidine</topic><topic>Hot Temperature</topic><topic>Insecta - microbiology</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Metagenome</topic><topic>metagenomics</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Observations</topic><topic>Peptides</topic><topic>Phosphatase</topic><topic>Phosphatases</topic><topic>phosphates</topic><topic>Phylogenetics</topic><topic>Physiological aspects</topic><topic>phytases</topic><topic>phytic acid</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Statistical analysis</topic><topic>Taxonomy</topic><topic>temperature</topic><topic>thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Wu, Xiang</creatorcontrib><creatorcontrib>Xie, Liyuan</creatorcontrib><creatorcontrib>Huang, Zhongqian</creatorcontrib><creatorcontrib>Peng, Weihong</creatorcontrib><creatorcontrib>Gan, Bingcheng</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Hao</au><au>Wu, Xiang</au><au>Xie, Liyuan</au><au>Huang, Zhongqian</au><au>Peng, Weihong</au><au>Gan, Bingcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>100</volume><issue>5</issue><spage>2225</spage><epage>2241</epage><pages>2225-2241</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Phytases are enzymes degrading phytic acid and thereby releasing inorganic phosphate. While the phytases reported to date are majorly from culturable microorganisms, the fast-growing quantity of publicly available metagenomic data generated in the last decade has enabled bioinformatic mining of phytases in numerous data mines derived from a variety of ecosystems throughout the world. In this study, we are interested in the histidine acid phosphatase (HAP) family phytases present in insect-cultivated fungus gardens. Using bioinformatic approaches, 11 putative HAP phytase genes were initially screened from 18 publicly available metagenomes of fungus gardens and were further overexpressed in Escherichia coli. One phytase from a south pine beetle fungus garden showed the highest activity and was then chosen for further study. Biochemical characterization showed that the phytase is mesophilic but possesses strong ability to withstand high temperatures. To our knowledge, it has the longest half-life time at 100 °C (27 min) and at 80 °C (2.1 h) as compared to all the thermostable phytases publicly reported to date. After 100 °C incubation for 15 min, more than 93 % of the activity was retained. The activity was 3102 μmol P/min/mg at 37 °C and 4135 μmol P/min/mg at 52.5 °C, which is higher than all the known thermostable phytases. For the high activity level demonstrated at mesophilic temperatures as well as the high resilience to high temperatures, the phytase might be promising for potential application as an additive enzyme in animal feed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26536874</pmid><doi>10.1007/s00253-015-7097-9</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2016-03, Vol.100 (5), p.2225-2241 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1768575030 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 6-Phytase - chemistry 6-Phytase - genetics 6-Phytase - metabolism acid phosphatase Animals bioinformatics Biomedical and Life Sciences Biotechnologically Relevant Enzymes and Proteins Biotechnology Cloning, Molecular Coleoptera Crystal structure Data mining E coli ecosystems Enzyme Stability Enzymes Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Feeds Fungi Fungi - enzymology Fungi - genetics Fungi - growth & development fungus gardens Gardens & gardening Gene Expression gene overexpression Genes half life High temperature histidine Hot Temperature Insecta - microbiology Kinetics Life Sciences Metagenome metagenomics Microbial Genetics and Genomics Microbiology Microorganisms Observations Peptides Phosphatase Phosphatases phosphates Phylogenetics Physiological aspects phytases phytic acid Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Statistical analysis Taxonomy temperature thermal stability |
title | Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20characterization%20of%20a%20mesophilic%20phytase%20highly%20resilient%20to%20high-temperatures%20from%20a%20fungus-garden%20associated%20metagenome&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Tan,%20Hao&rft.date=2016-03-01&rft.volume=100&rft.issue=5&rft.spage=2225&rft.epage=2241&rft.pages=2225-2241&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-015-7097-9&rft_dat=%3Cgale_proqu%3EA443488422%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765327782&rft_id=info:pmid/26536874&rft_galeid=A443488422&rfr_iscdi=true |