Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome

Phytases are enzymes degrading phytic acid and thereby releasing inorganic phosphate. While the phytases reported to date are majorly from culturable microorganisms, the fast-growing quantity of publicly available metagenomic data generated in the last decade has enabled bioinformatic mining of phyt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2016-03, Vol.100 (5), p.2225-2241
Hauptverfasser: Tan, Hao, Wu, Xiang, Xie, Liyuan, Huang, Zhongqian, Peng, Weihong, Gan, Bingcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2241
container_issue 5
container_start_page 2225
container_title Applied microbiology and biotechnology
container_volume 100
creator Tan, Hao
Wu, Xiang
Xie, Liyuan
Huang, Zhongqian
Peng, Weihong
Gan, Bingcheng
description Phytases are enzymes degrading phytic acid and thereby releasing inorganic phosphate. While the phytases reported to date are majorly from culturable microorganisms, the fast-growing quantity of publicly available metagenomic data generated in the last decade has enabled bioinformatic mining of phytases in numerous data mines derived from a variety of ecosystems throughout the world. In this study, we are interested in the histidine acid phosphatase (HAP) family phytases present in insect-cultivated fungus gardens. Using bioinformatic approaches, 11 putative HAP phytase genes were initially screened from 18 publicly available metagenomes of fungus gardens and were further overexpressed in Escherichia coli. One phytase from a south pine beetle fungus garden showed the highest activity and was then chosen for further study. Biochemical characterization showed that the phytase is mesophilic but possesses strong ability to withstand high temperatures. To our knowledge, it has the longest half-life time at 100 °C (27 min) and at 80 °C (2.1 h) as compared to all the thermostable phytases publicly reported to date. After 100 °C incubation for 15 min, more than 93 % of the activity was retained. The activity was 3102 μmol P/min/mg at 37 °C and 4135 μmol P/min/mg at 52.5 °C, which is higher than all the known thermostable phytases. For the high activity level demonstrated at mesophilic temperatures as well as the high resilience to high temperatures, the phytase might be promising for potential application as an additive enzyme in animal feed.
doi_str_mv 10.1007/s00253-015-7097-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1768575030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A443488422</galeid><sourcerecordid>A443488422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-f6a0242e722e433e7788933aeb5de5cd298dbb39b4198bbfb44656cdb37efb0d3</originalsourceid><addsrcrecordid>eNqNktuK1TAUhosoznb0AbzRgjd60TGnJunlMHjYMCA4znVI05XuDG2zTVKY7TP40KZ2PGwRkVwE1vr-P1mLvyieYnSGERKvI0KkphXCdSVQI6rmXrHBjJIKcczuFxuERe7UjTwpHsV4gxAmkvOHxQnhNeVSsE3xddvBlJx1Rifnp1JPXWl2OmiTILgva9HbUpcjRL_fucGZcr87JB2h3Ll-NxzKADGXs02Z_PdalWDcQ9Bpzq3SBj9mvZ2nfo5Vr0N-sdQxeuN0gi4bJ93D5Ed4XDyweojw5O4-La7fvvl08b66_PBue3F-WRlORaos14gwAoIQYJSCEFI2lGpo6w5q05FGdm1Lm5bhRratbRnjNTddSwXYFnX0tHi5-u6D_zxDTGp00cAw6An8HBUWXNaiRhT9D8oJp5KzjL74A73xc5jyIAtVU5L_SX5RvR5Aucn6lJe9mKpzxiiTkpGFOvsLlU8HozN-Auty_Ujw6kiQmQS3qddzjGp79fGYxStrgo8xgFX74EYdDgojtQRLrcFSOVhqCZZqsubZ3XBzO0L3U_EjSRkgKxBza-oh_Db9P1yfryKrvdJ9cFFdXxGEeY4qysti9Bu0jeHK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765327782</pqid></control><display><type>article</type><title>Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tan, Hao ; Wu, Xiang ; Xie, Liyuan ; Huang, Zhongqian ; Peng, Weihong ; Gan, Bingcheng</creator><creatorcontrib>Tan, Hao ; Wu, Xiang ; Xie, Liyuan ; Huang, Zhongqian ; Peng, Weihong ; Gan, Bingcheng</creatorcontrib><description>Phytases are enzymes degrading phytic acid and thereby releasing inorganic phosphate. While the phytases reported to date are majorly from culturable microorganisms, the fast-growing quantity of publicly available metagenomic data generated in the last decade has enabled bioinformatic mining of phytases in numerous data mines derived from a variety of ecosystems throughout the world. In this study, we are interested in the histidine acid phosphatase (HAP) family phytases present in insect-cultivated fungus gardens. Using bioinformatic approaches, 11 putative HAP phytase genes were initially screened from 18 publicly available metagenomes of fungus gardens and were further overexpressed in Escherichia coli. One phytase from a south pine beetle fungus garden showed the highest activity and was then chosen for further study. Biochemical characterization showed that the phytase is mesophilic but possesses strong ability to withstand high temperatures. To our knowledge, it has the longest half-life time at 100 °C (27 min) and at 80 °C (2.1 h) as compared to all the thermostable phytases publicly reported to date. After 100 °C incubation for 15 min, more than 93 % of the activity was retained. The activity was 3102 μmol P/min/mg at 37 °C and 4135 μmol P/min/mg at 52.5 °C, which is higher than all the known thermostable phytases. For the high activity level demonstrated at mesophilic temperatures as well as the high resilience to high temperatures, the phytase might be promising for potential application as an additive enzyme in animal feed.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-015-7097-9</identifier><identifier>PMID: 26536874</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>6-Phytase - chemistry ; 6-Phytase - genetics ; 6-Phytase - metabolism ; acid phosphatase ; Animals ; bioinformatics ; Biomedical and Life Sciences ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Cloning, Molecular ; Coleoptera ; Crystal structure ; Data mining ; E coli ; ecosystems ; Enzyme Stability ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Feeds ; Fungi ; Fungi - enzymology ; Fungi - genetics ; Fungi - growth &amp; development ; fungus gardens ; Gardens &amp; gardening ; Gene Expression ; gene overexpression ; Genes ; half life ; High temperature ; histidine ; Hot Temperature ; Insecta - microbiology ; Kinetics ; Life Sciences ; Metagenome ; metagenomics ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Observations ; Peptides ; Phosphatase ; Phosphatases ; phosphates ; Phylogenetics ; Physiological aspects ; phytases ; phytic acid ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Statistical analysis ; Taxonomy ; temperature ; thermal stability</subject><ispartof>Applied microbiology and biotechnology, 2016-03, Vol.100 (5), p.2225-2241</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-f6a0242e722e433e7788933aeb5de5cd298dbb39b4198bbfb44656cdb37efb0d3</citedby><cites>FETCH-LOGICAL-c637t-f6a0242e722e433e7788933aeb5de5cd298dbb39b4198bbfb44656cdb37efb0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-015-7097-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-015-7097-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26536874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Wu, Xiang</creatorcontrib><creatorcontrib>Xie, Liyuan</creatorcontrib><creatorcontrib>Huang, Zhongqian</creatorcontrib><creatorcontrib>Peng, Weihong</creatorcontrib><creatorcontrib>Gan, Bingcheng</creatorcontrib><title>Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Phytases are enzymes degrading phytic acid and thereby releasing inorganic phosphate. While the phytases reported to date are majorly from culturable microorganisms, the fast-growing quantity of publicly available metagenomic data generated in the last decade has enabled bioinformatic mining of phytases in numerous data mines derived from a variety of ecosystems throughout the world. In this study, we are interested in the histidine acid phosphatase (HAP) family phytases present in insect-cultivated fungus gardens. Using bioinformatic approaches, 11 putative HAP phytase genes were initially screened from 18 publicly available metagenomes of fungus gardens and were further overexpressed in Escherichia coli. One phytase from a south pine beetle fungus garden showed the highest activity and was then chosen for further study. Biochemical characterization showed that the phytase is mesophilic but possesses strong ability to withstand high temperatures. To our knowledge, it has the longest half-life time at 100 °C (27 min) and at 80 °C (2.1 h) as compared to all the thermostable phytases publicly reported to date. After 100 °C incubation for 15 min, more than 93 % of the activity was retained. The activity was 3102 μmol P/min/mg at 37 °C and 4135 μmol P/min/mg at 52.5 °C, which is higher than all the known thermostable phytases. For the high activity level demonstrated at mesophilic temperatures as well as the high resilience to high temperatures, the phytase might be promising for potential application as an additive enzyme in animal feed.</description><subject>6-Phytase - chemistry</subject><subject>6-Phytase - genetics</subject><subject>6-Phytase - metabolism</subject><subject>acid phosphatase</subject><subject>Animals</subject><subject>bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Cloning, Molecular</subject><subject>Coleoptera</subject><subject>Crystal structure</subject><subject>Data mining</subject><subject>E coli</subject><subject>ecosystems</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Feeds</subject><subject>Fungi</subject><subject>Fungi - enzymology</subject><subject>Fungi - genetics</subject><subject>Fungi - growth &amp; development</subject><subject>fungus gardens</subject><subject>Gardens &amp; gardening</subject><subject>Gene Expression</subject><subject>gene overexpression</subject><subject>Genes</subject><subject>half life</subject><subject>High temperature</subject><subject>histidine</subject><subject>Hot Temperature</subject><subject>Insecta - microbiology</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Metagenome</subject><subject>metagenomics</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Observations</subject><subject>Peptides</subject><subject>Phosphatase</subject><subject>Phosphatases</subject><subject>phosphates</subject><subject>Phylogenetics</subject><subject>Physiological aspects</subject><subject>phytases</subject><subject>phytic acid</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Statistical analysis</subject><subject>Taxonomy</subject><subject>temperature</subject><subject>thermal stability</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNktuK1TAUhosoznb0AbzRgjd60TGnJunlMHjYMCA4znVI05XuDG2zTVKY7TP40KZ2PGwRkVwE1vr-P1mLvyieYnSGERKvI0KkphXCdSVQI6rmXrHBjJIKcczuFxuERe7UjTwpHsV4gxAmkvOHxQnhNeVSsE3xddvBlJx1Rifnp1JPXWl2OmiTILgva9HbUpcjRL_fucGZcr87JB2h3Ll-NxzKADGXs02Z_PdalWDcQ9Bpzq3SBj9mvZ2nfo5Vr0N-sdQxeuN0gi4bJ93D5Ed4XDyweojw5O4-La7fvvl08b66_PBue3F-WRlORaos14gwAoIQYJSCEFI2lGpo6w5q05FGdm1Lm5bhRratbRnjNTddSwXYFnX0tHi5-u6D_zxDTGp00cAw6An8HBUWXNaiRhT9D8oJp5KzjL74A73xc5jyIAtVU5L_SX5RvR5Aucn6lJe9mKpzxiiTkpGFOvsLlU8HozN-Auty_Ujw6kiQmQS3qddzjGp79fGYxStrgo8xgFX74EYdDgojtQRLrcFSOVhqCZZqsubZ3XBzO0L3U_EjSRkgKxBza-oh_Db9P1yfryKrvdJ9cFFdXxGEeY4qysti9Bu0jeHK</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Tan, Hao</creator><creator>Wu, Xiang</creator><creator>Xie, Liyuan</creator><creator>Huang, Zhongqian</creator><creator>Peng, Weihong</creator><creator>Gan, Bingcheng</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20160301</creationdate><title>Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome</title><author>Tan, Hao ; Wu, Xiang ; Xie, Liyuan ; Huang, Zhongqian ; Peng, Weihong ; Gan, Bingcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-f6a0242e722e433e7788933aeb5de5cd298dbb39b4198bbfb44656cdb37efb0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>6-Phytase - chemistry</topic><topic>6-Phytase - genetics</topic><topic>6-Phytase - metabolism</topic><topic>acid phosphatase</topic><topic>Animals</topic><topic>bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Cloning, Molecular</topic><topic>Coleoptera</topic><topic>Crystal structure</topic><topic>Data mining</topic><topic>E coli</topic><topic>ecosystems</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Feeds</topic><topic>Fungi</topic><topic>Fungi - enzymology</topic><topic>Fungi - genetics</topic><topic>Fungi - growth &amp; development</topic><topic>fungus gardens</topic><topic>Gardens &amp; gardening</topic><topic>Gene Expression</topic><topic>gene overexpression</topic><topic>Genes</topic><topic>half life</topic><topic>High temperature</topic><topic>histidine</topic><topic>Hot Temperature</topic><topic>Insecta - microbiology</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Metagenome</topic><topic>metagenomics</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Observations</topic><topic>Peptides</topic><topic>Phosphatase</topic><topic>Phosphatases</topic><topic>phosphates</topic><topic>Phylogenetics</topic><topic>Physiological aspects</topic><topic>phytases</topic><topic>phytic acid</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Statistical analysis</topic><topic>Taxonomy</topic><topic>temperature</topic><topic>thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Wu, Xiang</creatorcontrib><creatorcontrib>Xie, Liyuan</creatorcontrib><creatorcontrib>Huang, Zhongqian</creatorcontrib><creatorcontrib>Peng, Weihong</creatorcontrib><creatorcontrib>Gan, Bingcheng</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Hao</au><au>Wu, Xiang</au><au>Xie, Liyuan</au><au>Huang, Zhongqian</au><au>Peng, Weihong</au><au>Gan, Bingcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>100</volume><issue>5</issue><spage>2225</spage><epage>2241</epage><pages>2225-2241</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Phytases are enzymes degrading phytic acid and thereby releasing inorganic phosphate. While the phytases reported to date are majorly from culturable microorganisms, the fast-growing quantity of publicly available metagenomic data generated in the last decade has enabled bioinformatic mining of phytases in numerous data mines derived from a variety of ecosystems throughout the world. In this study, we are interested in the histidine acid phosphatase (HAP) family phytases present in insect-cultivated fungus gardens. Using bioinformatic approaches, 11 putative HAP phytase genes were initially screened from 18 publicly available metagenomes of fungus gardens and were further overexpressed in Escherichia coli. One phytase from a south pine beetle fungus garden showed the highest activity and was then chosen for further study. Biochemical characterization showed that the phytase is mesophilic but possesses strong ability to withstand high temperatures. To our knowledge, it has the longest half-life time at 100 °C (27 min) and at 80 °C (2.1 h) as compared to all the thermostable phytases publicly reported to date. After 100 °C incubation for 15 min, more than 93 % of the activity was retained. The activity was 3102 μmol P/min/mg at 37 °C and 4135 μmol P/min/mg at 52.5 °C, which is higher than all the known thermostable phytases. For the high activity level demonstrated at mesophilic temperatures as well as the high resilience to high temperatures, the phytase might be promising for potential application as an additive enzyme in animal feed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26536874</pmid><doi>10.1007/s00253-015-7097-9</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2016-03, Vol.100 (5), p.2225-2241
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1768575030
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 6-Phytase - chemistry
6-Phytase - genetics
6-Phytase - metabolism
acid phosphatase
Animals
bioinformatics
Biomedical and Life Sciences
Biotechnologically Relevant Enzymes and Proteins
Biotechnology
Cloning, Molecular
Coleoptera
Crystal structure
Data mining
E coli
ecosystems
Enzyme Stability
Enzymes
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Feeds
Fungi
Fungi - enzymology
Fungi - genetics
Fungi - growth & development
fungus gardens
Gardens & gardening
Gene Expression
gene overexpression
Genes
half life
High temperature
histidine
Hot Temperature
Insecta - microbiology
Kinetics
Life Sciences
Metagenome
metagenomics
Microbial Genetics and Genomics
Microbiology
Microorganisms
Observations
Peptides
Phosphatase
Phosphatases
phosphates
Phylogenetics
Physiological aspects
phytases
phytic acid
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Statistical analysis
Taxonomy
temperature
thermal stability
title Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20characterization%20of%20a%20mesophilic%20phytase%20highly%20resilient%20to%20high-temperatures%20from%20a%20fungus-garden%20associated%20metagenome&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Tan,%20Hao&rft.date=2016-03-01&rft.volume=100&rft.issue=5&rft.spage=2225&rft.epage=2241&rft.pages=2225-2241&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-015-7097-9&rft_dat=%3Cgale_proqu%3EA443488422%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765327782&rft_id=info:pmid/26536874&rft_galeid=A443488422&rfr_iscdi=true