Ursodeoxycholic Acid Ameliorates Apoptotic Cascade in the Rotenone Model of Parkinson’s Disease: Modulation of Mitochondrial Perturbations

The recent emergence of ursodeoxycholic acid (UDCA) as a contender in modifying neurotoxicity in human dopaminergic cells as well as its recognized anti-apoptotic and anti-inflammatory potentials in various hepatic pathologies raised impetus in investigating its anti-parkinsonian effect in rat roten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2016-03, Vol.53 (2), p.810-817
Hauptverfasser: Abdelkader, Noha F., Safar, Marwa M., Salem, Hesham A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 817
container_issue 2
container_start_page 810
container_title Molecular neurobiology
container_volume 53
creator Abdelkader, Noha F.
Safar, Marwa M.
Salem, Hesham A.
description The recent emergence of ursodeoxycholic acid (UDCA) as a contender in modifying neurotoxicity in human dopaminergic cells as well as its recognized anti-apoptotic and anti-inflammatory potentials in various hepatic pathologies raised impetus in investigating its anti-parkinsonian effect in rat rotenone model. UDCA prominently improved motor performance in the open field test and halted the decline in the striatal dopamine content. Meanwhile, it improved mitochondrial function as verified by elevation of ATP associated with preservation of mitochondrial integrity as portrayed in the electron microscope examination. In addition, through its anti-inflammatory potential, UDCA reduced the rotenone-induced nuclear factor-κB expression and tumor necrosis factor alpha level. Furthermore, UDCA amended alterations in Bax and Bcl-2 and reduced the activities of caspase-8, caspase-9, and caspase-3, indicating that it suppressed rotenone-induced apoptosis via modulating both intrinsic and extrinsic pathways. In conclusion, UDCA can be introduced as a novel approach for the management of Parkinson’s disease via anti-apoptotic and anti-inflammatory mechanisms. These effects are probably linked to dopamine synthesis and mitochondrial regulation.
doi_str_mv 10.1007/s12035-014-9043-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1768574572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1768574572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-719693e29468deeaa1ea0e4608c0be6288586b5dbd654faf994cf08a6b2eec143</originalsourceid><addsrcrecordid>eNp1kcFqFTEUhoNY7LX6AG4k4MbNaJJJMom7y1VrocUidh0ymTM2dW5yTTJgdz6AL9DX80ma6a0igquz-L_znwMfQs8oeUUJ6V5nykgrGkJ5owlvG_UAragQuqFUsYdoRZRum05ydYge53xFCGOUdI_QIROCMC7ZCv28SDkOEL9fu8s4eYfXzg94vYXJx2QLZLzexV2JpUYbm50dAPuAyyXgT7FAiAHwWS2YcBzxuU1ffcgx_Ppxk_Fbn8FmeLPk82SLj2GBznyJ9VYYkrcTPodU5tTfpfkJOhjtlOHp_TxCF-_ffd58aE4_Hp9s1qeNE5yWpqNa6haY5lINANZSsAS4JMqRHiRTSijZi6EfpOCjHbXmbiTKyp4BOMrbI_Ry37tL8dsMuZitzw6myQaIcza0k0p0XHSsoi_-Qa_inEL9bqG44ppqUim6p1yKOScYzS75rU3XhhKzqDJ7VaaqMosqo-rO8_vmud_C8Gfjt5sKsD2QaxS-QPrr9H9bbwHkEqGY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764849190</pqid></control><display><type>article</type><title>Ursodeoxycholic Acid Ameliorates Apoptotic Cascade in the Rotenone Model of Parkinson’s Disease: Modulation of Mitochondrial Perturbations</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Abdelkader, Noha F. ; Safar, Marwa M. ; Salem, Hesham A.</creator><creatorcontrib>Abdelkader, Noha F. ; Safar, Marwa M. ; Salem, Hesham A.</creatorcontrib><description>The recent emergence of ursodeoxycholic acid (UDCA) as a contender in modifying neurotoxicity in human dopaminergic cells as well as its recognized anti-apoptotic and anti-inflammatory potentials in various hepatic pathologies raised impetus in investigating its anti-parkinsonian effect in rat rotenone model. UDCA prominently improved motor performance in the open field test and halted the decline in the striatal dopamine content. Meanwhile, it improved mitochondrial function as verified by elevation of ATP associated with preservation of mitochondrial integrity as portrayed in the electron microscope examination. In addition, through its anti-inflammatory potential, UDCA reduced the rotenone-induced nuclear factor-κB expression and tumor necrosis factor alpha level. Furthermore, UDCA amended alterations in Bax and Bcl-2 and reduced the activities of caspase-8, caspase-9, and caspase-3, indicating that it suppressed rotenone-induced apoptosis via modulating both intrinsic and extrinsic pathways. In conclusion, UDCA can be introduced as a novel approach for the management of Parkinson’s disease via anti-apoptotic and anti-inflammatory mechanisms. These effects are probably linked to dopamine synthesis and mitochondrial regulation.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-014-9043-8</identifier><identifier>PMID: 25502462</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Apoptosis ; Apoptosis - drug effects ; Behavior, Animal - drug effects ; Biomedical and Life Sciences ; Biomedicine ; Caspases - metabolism ; Cell Biology ; Disease Models, Animal ; Dopamine ; Dopamine - metabolism ; Enzymes ; Gene Expression Regulation - drug effects ; Male ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Neostriatum - drug effects ; Neostriatum - enzymology ; Neostriatum - metabolism ; Neostriatum - pathology ; Neurobiology ; Neurology ; Neurons - drug effects ; Neurons - metabolism ; Neurons - pathology ; Neurons - ultrastructure ; Neurosciences ; Parkinson Disease - metabolism ; Parkinson Disease - pathology ; Parkinson's disease ; Rats, Wistar ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Rotenone ; Ursodeoxycholic Acid - pharmacology</subject><ispartof>Molecular neurobiology, 2016-03, Vol.53 (2), p.810-817</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-719693e29468deeaa1ea0e4608c0be6288586b5dbd654faf994cf08a6b2eec143</citedby><cites>FETCH-LOGICAL-c541t-719693e29468deeaa1ea0e4608c0be6288586b5dbd654faf994cf08a6b2eec143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-014-9043-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-014-9043-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25502462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdelkader, Noha F.</creatorcontrib><creatorcontrib>Safar, Marwa M.</creatorcontrib><creatorcontrib>Salem, Hesham A.</creatorcontrib><title>Ursodeoxycholic Acid Ameliorates Apoptotic Cascade in the Rotenone Model of Parkinson’s Disease: Modulation of Mitochondrial Perturbations</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>The recent emergence of ursodeoxycholic acid (UDCA) as a contender in modifying neurotoxicity in human dopaminergic cells as well as its recognized anti-apoptotic and anti-inflammatory potentials in various hepatic pathologies raised impetus in investigating its anti-parkinsonian effect in rat rotenone model. UDCA prominently improved motor performance in the open field test and halted the decline in the striatal dopamine content. Meanwhile, it improved mitochondrial function as verified by elevation of ATP associated with preservation of mitochondrial integrity as portrayed in the electron microscope examination. In addition, through its anti-inflammatory potential, UDCA reduced the rotenone-induced nuclear factor-κB expression and tumor necrosis factor alpha level. Furthermore, UDCA amended alterations in Bax and Bcl-2 and reduced the activities of caspase-8, caspase-9, and caspase-3, indicating that it suppressed rotenone-induced apoptosis via modulating both intrinsic and extrinsic pathways. In conclusion, UDCA can be introduced as a novel approach for the management of Parkinson’s disease via anti-apoptotic and anti-inflammatory mechanisms. These effects are probably linked to dopamine synthesis and mitochondrial regulation.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Behavior, Animal - drug effects</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Caspases - metabolism</subject><subject>Cell Biology</subject><subject>Disease Models, Animal</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Enzymes</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Male</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Neostriatum - drug effects</subject><subject>Neostriatum - enzymology</subject><subject>Neostriatum - metabolism</subject><subject>Neostriatum - pathology</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neurons - ultrastructure</subject><subject>Neurosciences</subject><subject>Parkinson Disease - metabolism</subject><subject>Parkinson Disease - pathology</subject><subject>Parkinson's disease</subject><subject>Rats, Wistar</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Rotenone</subject><subject>Ursodeoxycholic Acid - pharmacology</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcFqFTEUhoNY7LX6AG4k4MbNaJJJMom7y1VrocUidh0ymTM2dW5yTTJgdz6AL9DX80ma6a0igquz-L_znwMfQs8oeUUJ6V5nykgrGkJ5owlvG_UAragQuqFUsYdoRZRum05ydYge53xFCGOUdI_QIROCMC7ZCv28SDkOEL9fu8s4eYfXzg94vYXJx2QLZLzexV2JpUYbm50dAPuAyyXgT7FAiAHwWS2YcBzxuU1ffcgx_Ppxk_Fbn8FmeLPk82SLj2GBznyJ9VYYkrcTPodU5tTfpfkJOhjtlOHp_TxCF-_ffd58aE4_Hp9s1qeNE5yWpqNa6haY5lINANZSsAS4JMqRHiRTSijZi6EfpOCjHbXmbiTKyp4BOMrbI_Ry37tL8dsMuZitzw6myQaIcza0k0p0XHSsoi_-Qa_inEL9bqG44ppqUim6p1yKOScYzS75rU3XhhKzqDJ7VaaqMosqo-rO8_vmud_C8Gfjt5sKsD2QaxS-QPrr9H9bbwHkEqGY</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Abdelkader, Noha F.</creator><creator>Safar, Marwa M.</creator><creator>Salem, Hesham A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20160301</creationdate><title>Ursodeoxycholic Acid Ameliorates Apoptotic Cascade in the Rotenone Model of Parkinson’s Disease: Modulation of Mitochondrial Perturbations</title><author>Abdelkader, Noha F. ; Safar, Marwa M. ; Salem, Hesham A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-719693e29468deeaa1ea0e4608c0be6288586b5dbd654faf994cf08a6b2eec143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Behavior, Animal - drug effects</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Caspases - metabolism</topic><topic>Cell Biology</topic><topic>Disease Models, Animal</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Enzymes</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Male</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Neostriatum - drug effects</topic><topic>Neostriatum - enzymology</topic><topic>Neostriatum - metabolism</topic><topic>Neostriatum - pathology</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neurons - ultrastructure</topic><topic>Neurosciences</topic><topic>Parkinson Disease - metabolism</topic><topic>Parkinson Disease - pathology</topic><topic>Parkinson's disease</topic><topic>Rats, Wistar</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Rotenone</topic><topic>Ursodeoxycholic Acid - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdelkader, Noha F.</creatorcontrib><creatorcontrib>Safar, Marwa M.</creatorcontrib><creatorcontrib>Salem, Hesham A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelkader, Noha F.</au><au>Safar, Marwa M.</au><au>Salem, Hesham A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ursodeoxycholic Acid Ameliorates Apoptotic Cascade in the Rotenone Model of Parkinson’s Disease: Modulation of Mitochondrial Perturbations</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>53</volume><issue>2</issue><spage>810</spage><epage>817</epage><pages>810-817</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>The recent emergence of ursodeoxycholic acid (UDCA) as a contender in modifying neurotoxicity in human dopaminergic cells as well as its recognized anti-apoptotic and anti-inflammatory potentials in various hepatic pathologies raised impetus in investigating its anti-parkinsonian effect in rat rotenone model. UDCA prominently improved motor performance in the open field test and halted the decline in the striatal dopamine content. Meanwhile, it improved mitochondrial function as verified by elevation of ATP associated with preservation of mitochondrial integrity as portrayed in the electron microscope examination. In addition, through its anti-inflammatory potential, UDCA reduced the rotenone-induced nuclear factor-κB expression and tumor necrosis factor alpha level. Furthermore, UDCA amended alterations in Bax and Bcl-2 and reduced the activities of caspase-8, caspase-9, and caspase-3, indicating that it suppressed rotenone-induced apoptosis via modulating both intrinsic and extrinsic pathways. In conclusion, UDCA can be introduced as a novel approach for the management of Parkinson’s disease via anti-apoptotic and anti-inflammatory mechanisms. These effects are probably linked to dopamine synthesis and mitochondrial regulation.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>25502462</pmid><doi>10.1007/s12035-014-9043-8</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2016-03, Vol.53 (2), p.810-817
issn 0893-7648
1559-1182
language eng
recordid cdi_proquest_miscellaneous_1768574572
source MEDLINE; SpringerNature Journals
subjects Adenosine Triphosphate - metabolism
Animals
Apoptosis
Apoptosis - drug effects
Behavior, Animal - drug effects
Biomedical and Life Sciences
Biomedicine
Caspases - metabolism
Cell Biology
Disease Models, Animal
Dopamine
Dopamine - metabolism
Enzymes
Gene Expression Regulation - drug effects
Male
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondria - ultrastructure
Neostriatum - drug effects
Neostriatum - enzymology
Neostriatum - metabolism
Neostriatum - pathology
Neurobiology
Neurology
Neurons - drug effects
Neurons - metabolism
Neurons - pathology
Neurons - ultrastructure
Neurosciences
Parkinson Disease - metabolism
Parkinson Disease - pathology
Parkinson's disease
Rats, Wistar
RNA, Messenger - genetics
RNA, Messenger - metabolism
Rotenone
Ursodeoxycholic Acid - pharmacology
title Ursodeoxycholic Acid Ameliorates Apoptotic Cascade in the Rotenone Model of Parkinson’s Disease: Modulation of Mitochondrial Perturbations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ursodeoxycholic%20Acid%20Ameliorates%20Apoptotic%20Cascade%20in%20the%20Rotenone%20Model%20of%20Parkinson%E2%80%99s%20Disease:%20Modulation%20of%20Mitochondrial%20Perturbations&rft.jtitle=Molecular%20neurobiology&rft.au=Abdelkader,%20Noha%20F.&rft.date=2016-03-01&rft.volume=53&rft.issue=2&rft.spage=810&rft.epage=817&rft.pages=810-817&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-014-9043-8&rft_dat=%3Cproquest_cross%3E1768574572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764849190&rft_id=info:pmid/25502462&rfr_iscdi=true