Realizing Low-Energy Classification Systems by Implementing Matrix Multiplication Directly Within an ADC
In wearable and implantable medical-sensor applications, low-energy classification systems are of importance for deriving high-quality inferences locally within the device. Given that sensor instrumentation is typically followed by A-D conversion, this paper presents a system implementation wherein...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on biomedical circuits and systems 2015-12, Vol.9 (6), p.825-837 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In wearable and implantable medical-sensor applications, low-energy classification systems are of importance for deriving high-quality inferences locally within the device. Given that sensor instrumentation is typically followed by A-D conversion, this paper presents a system implementation wherein the majority of the computations required for classification are implemented within the ADC. To achieve this, first an algorithmic formulation is presented that combines linear feature extraction and classification into a single matrix transformation. Second, a matrix-multiplying ADC (MMADC) is presented that enables multiplication between an analog input sample and a digital multiplier, with negligible additional energy beyond that required for A-D conversion. Two systems mapped to the MMADC are demonstrated: (1) an ECG-based cardiac arrhythmia detector; and (2) an image-pixel-based facial gender detector. The RMS error over all multiplication performed, normalized to the RMS of ideal multiplication results is 0.018. Further, compared to idealized versions of conventional systems, the energy savings obtained are estimated to be 13× and 29×, respectively, while achieving similar level of performance. |
---|---|
ISSN: | 1932-4545 1940-9990 |
DOI: | 10.1109/TBCAS.2015.2500101 |