Novel prediction model of renal function after nephrectomy from automated renal volumetry with preoperative multidetector computed tomography (MDCT)

Background and purpose The predictive model of postoperative renal function may impact on planning nephrectomy. To develop the novel predictive model using combination of clinical indices with computer volumetry to measure the preserved renal cortex volume (RCV) using multidetector computed tomograp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical and experimental nephrology 2015-10, Vol.19 (5), p.974-981
Hauptverfasser: Isotani, Shuji, Shimoyama, Hirofumi, Yokota, Isao, Noma, Yasuhiro, Kitamura, Kousuke, China, Toshiyuki, Saito, Keisuke, Hisasue, Shin-ichi, Ide, Hisamitsu, Muto, Satoru, Yamaguchi, Raizo, Ukimura, Osamu, Gill, Inderbir S., Horie, Shigeo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 981
container_issue 5
container_start_page 974
container_title Clinical and experimental nephrology
container_volume 19
creator Isotani, Shuji
Shimoyama, Hirofumi
Yokota, Isao
Noma, Yasuhiro
Kitamura, Kousuke
China, Toshiyuki
Saito, Keisuke
Hisasue, Shin-ichi
Ide, Hisamitsu
Muto, Satoru
Yamaguchi, Raizo
Ukimura, Osamu
Gill, Inderbir S.
Horie, Shigeo
description Background and purpose The predictive model of postoperative renal function may impact on planning nephrectomy. To develop the novel predictive model using combination of clinical indices with computer volumetry to measure the preserved renal cortex volume (RCV) using multidetector computed tomography (MDCT), and to prospectively validate performance of the model. Patients and methods Total 60 patients undergoing radical nephrectomy from 2011 to 2013 participated, including a development cohort of 39 patients and an external validation cohort of 21 patients. RCV was calculated by voxel count using software (Vincent, FUJIFILM). Renal function before and after radical nephrectomy was assessed via the estimated glomerular filtration rate (eGFR). Factors affecting postoperative eGFR were examined by regression analysis to develop the novel model for predicting postoperative eGFR with a backward elimination method. The predictive model was externally validated and the performance of the model was compared with that of the previously reported models. Results The postoperative eGFR value was associated with age, preoperative eGFR, preserved renal parenchymal volume (RPV), preserved RCV, % of RPV alteration, and % of RCV alteration ( p  
doi_str_mv 10.1007/s10157-015-1082-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1768572012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1722422726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-d163e287c39369bcaa9bfddedc99ffb2805dcf0c264b2e1e3106d28a12a8cf413</originalsourceid><addsrcrecordid>eNqNkctu1TAQhiMEoqXwAGyQJTZlEfA4F9tLdLhKBTZlHTn2uCdVEgdfTnXegwfGIQeEkJDYjEfjbz5L_oviKdCXQCl_FYBCw8tcSqCCle294hzqipecS3k_91XNSuANnBWPQrillArZyIfFGWtaELWszovvn90BR7J4NIOOg5vJ5EweOEs8zmokNs3bXNmInsy47D3q6KYjsd5NRKXcq4jmxB_cmCaM_kjuhrhfxW5Br-JwQDKlMQ4G47rviXbTktbFLHA3Xi37I7n89GZ3_eJx8cCqMeCT03lRfH339nr3obz68v7j7vVVqZumjqWBtkImuK5k1cpeKyV7awwaLaW1PRO0MdpSzdq6ZwhYAW0NEwqYEtrWUF0Ul5t38e5bwhC7aQgax1HN6FLogLei4YwC-w-UsZoxztqMPv8LvXXJ57_5SYHgEkSVKdgo7V0IHm23-GFS_tgB7dZ0uy3dLpduTbdbzc9O5tRPaH5v_IozA2wDQr6ab9D_8fQ_rT8Agjmy9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721879183</pqid></control><display><type>article</type><title>Novel prediction model of renal function after nephrectomy from automated renal volumetry with preoperative multidetector computed tomography (MDCT)</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Isotani, Shuji ; Shimoyama, Hirofumi ; Yokota, Isao ; Noma, Yasuhiro ; Kitamura, Kousuke ; China, Toshiyuki ; Saito, Keisuke ; Hisasue, Shin-ichi ; Ide, Hisamitsu ; Muto, Satoru ; Yamaguchi, Raizo ; Ukimura, Osamu ; Gill, Inderbir S. ; Horie, Shigeo</creator><creatorcontrib>Isotani, Shuji ; Shimoyama, Hirofumi ; Yokota, Isao ; Noma, Yasuhiro ; Kitamura, Kousuke ; China, Toshiyuki ; Saito, Keisuke ; Hisasue, Shin-ichi ; Ide, Hisamitsu ; Muto, Satoru ; Yamaguchi, Raizo ; Ukimura, Osamu ; Gill, Inderbir S. ; Horie, Shigeo</creatorcontrib><description>Background and purpose The predictive model of postoperative renal function may impact on planning nephrectomy. To develop the novel predictive model using combination of clinical indices with computer volumetry to measure the preserved renal cortex volume (RCV) using multidetector computed tomography (MDCT), and to prospectively validate performance of the model. Patients and methods Total 60 patients undergoing radical nephrectomy from 2011 to 2013 participated, including a development cohort of 39 patients and an external validation cohort of 21 patients. RCV was calculated by voxel count using software (Vincent, FUJIFILM). Renal function before and after radical nephrectomy was assessed via the estimated glomerular filtration rate (eGFR). Factors affecting postoperative eGFR were examined by regression analysis to develop the novel model for predicting postoperative eGFR with a backward elimination method. The predictive model was externally validated and the performance of the model was compared with that of the previously reported models. Results The postoperative eGFR value was associated with age, preoperative eGFR, preserved renal parenchymal volume (RPV), preserved RCV, % of RPV alteration, and % of RCV alteration ( p  &lt; 0.01). The significant correlated variables for %eGFR alteration were %RCV preservation ( r  = 0.58, p  &lt; 0.01) and %RPV preservation ( r  = 0.54, p  &lt; 0.01). We developed our regression model as follows: postoperative eGFR = 57.87 − 0.55(age) − 15.01(body surface area) + 0.30(preoperative eGFR) + 52.92(%RCV preservation). Strong correlation was seen between postoperative eGFR and the calculated estimation model ( r  = 0.83; p  &lt; 0.001). The external validation cohort ( n  = 21) showed our model outperformed previously reported models. Conclusions Combining MDCT renal volumetry and clinical indices might yield an important tool for predicting postoperative renal function.</description><identifier>ISSN: 1342-1751</identifier><identifier>EISSN: 1437-7799</identifier><identifier>DOI: 10.1007/s10157-015-1082-6</identifier><identifier>PMID: 25618493</identifier><identifier>CODEN: CENPFV</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Automation ; Cohort Studies ; Female ; Glomerular Filtration Rate ; Humans ; Kidney - pathology ; Kidney Function Tests ; Male ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Multidetector Computed Tomography - methods ; Nephrectomy ; Nephrology ; Organ Size ; Original Article ; Postoperative Period ; Predictive Value of Tests ; Urology</subject><ispartof>Clinical and experimental nephrology, 2015-10, Vol.19 (5), p.974-981</ispartof><rights>Japanese Society of Nephrology 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-d163e287c39369bcaa9bfddedc99ffb2805dcf0c264b2e1e3106d28a12a8cf413</citedby><cites>FETCH-LOGICAL-c554t-d163e287c39369bcaa9bfddedc99ffb2805dcf0c264b2e1e3106d28a12a8cf413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10157-015-1082-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10157-015-1082-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25618493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Isotani, Shuji</creatorcontrib><creatorcontrib>Shimoyama, Hirofumi</creatorcontrib><creatorcontrib>Yokota, Isao</creatorcontrib><creatorcontrib>Noma, Yasuhiro</creatorcontrib><creatorcontrib>Kitamura, Kousuke</creatorcontrib><creatorcontrib>China, Toshiyuki</creatorcontrib><creatorcontrib>Saito, Keisuke</creatorcontrib><creatorcontrib>Hisasue, Shin-ichi</creatorcontrib><creatorcontrib>Ide, Hisamitsu</creatorcontrib><creatorcontrib>Muto, Satoru</creatorcontrib><creatorcontrib>Yamaguchi, Raizo</creatorcontrib><creatorcontrib>Ukimura, Osamu</creatorcontrib><creatorcontrib>Gill, Inderbir S.</creatorcontrib><creatorcontrib>Horie, Shigeo</creatorcontrib><title>Novel prediction model of renal function after nephrectomy from automated renal volumetry with preoperative multidetector computed tomography (MDCT)</title><title>Clinical and experimental nephrology</title><addtitle>Clin Exp Nephrol</addtitle><addtitle>Clin Exp Nephrol</addtitle><description>Background and purpose The predictive model of postoperative renal function may impact on planning nephrectomy. To develop the novel predictive model using combination of clinical indices with computer volumetry to measure the preserved renal cortex volume (RCV) using multidetector computed tomography (MDCT), and to prospectively validate performance of the model. Patients and methods Total 60 patients undergoing radical nephrectomy from 2011 to 2013 participated, including a development cohort of 39 patients and an external validation cohort of 21 patients. RCV was calculated by voxel count using software (Vincent, FUJIFILM). Renal function before and after radical nephrectomy was assessed via the estimated glomerular filtration rate (eGFR). Factors affecting postoperative eGFR were examined by regression analysis to develop the novel model for predicting postoperative eGFR with a backward elimination method. The predictive model was externally validated and the performance of the model was compared with that of the previously reported models. Results The postoperative eGFR value was associated with age, preoperative eGFR, preserved renal parenchymal volume (RPV), preserved RCV, % of RPV alteration, and % of RCV alteration ( p  &lt; 0.01). The significant correlated variables for %eGFR alteration were %RCV preservation ( r  = 0.58, p  &lt; 0.01) and %RPV preservation ( r  = 0.54, p  &lt; 0.01). We developed our regression model as follows: postoperative eGFR = 57.87 − 0.55(age) − 15.01(body surface area) + 0.30(preoperative eGFR) + 52.92(%RCV preservation). Strong correlation was seen between postoperative eGFR and the calculated estimation model ( r  = 0.83; p  &lt; 0.001). The external validation cohort ( n  = 21) showed our model outperformed previously reported models. Conclusions Combining MDCT renal volumetry and clinical indices might yield an important tool for predicting postoperative renal function.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Automation</subject><subject>Cohort Studies</subject><subject>Female</subject><subject>Glomerular Filtration Rate</subject><subject>Humans</subject><subject>Kidney - pathology</subject><subject>Kidney Function Tests</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Multidetector Computed Tomography - methods</subject><subject>Nephrectomy</subject><subject>Nephrology</subject><subject>Organ Size</subject><subject>Original Article</subject><subject>Postoperative Period</subject><subject>Predictive Value of Tests</subject><subject>Urology</subject><issn>1342-1751</issn><issn>1437-7799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqNkctu1TAQhiMEoqXwAGyQJTZlEfA4F9tLdLhKBTZlHTn2uCdVEgdfTnXegwfGIQeEkJDYjEfjbz5L_oviKdCXQCl_FYBCw8tcSqCCle294hzqipecS3k_91XNSuANnBWPQrillArZyIfFGWtaELWszovvn90BR7J4NIOOg5vJ5EweOEs8zmokNs3bXNmInsy47D3q6KYjsd5NRKXcq4jmxB_cmCaM_kjuhrhfxW5Br-JwQDKlMQ4G47rviXbTktbFLHA3Xi37I7n89GZ3_eJx8cCqMeCT03lRfH339nr3obz68v7j7vVVqZumjqWBtkImuK5k1cpeKyV7awwaLaW1PRO0MdpSzdq6ZwhYAW0NEwqYEtrWUF0Ul5t38e5bwhC7aQgax1HN6FLogLei4YwC-w-UsZoxztqMPv8LvXXJ57_5SYHgEkSVKdgo7V0IHm23-GFS_tgB7dZ0uy3dLpduTbdbzc9O5tRPaH5v_IozA2wDQr6ab9D_8fQ_rT8Agjmy9Q</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Isotani, Shuji</creator><creator>Shimoyama, Hirofumi</creator><creator>Yokota, Isao</creator><creator>Noma, Yasuhiro</creator><creator>Kitamura, Kousuke</creator><creator>China, Toshiyuki</creator><creator>Saito, Keisuke</creator><creator>Hisasue, Shin-ichi</creator><creator>Ide, Hisamitsu</creator><creator>Muto, Satoru</creator><creator>Yamaguchi, Raizo</creator><creator>Ukimura, Osamu</creator><creator>Gill, Inderbir S.</creator><creator>Horie, Shigeo</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20151001</creationdate><title>Novel prediction model of renal function after nephrectomy from automated renal volumetry with preoperative multidetector computed tomography (MDCT)</title><author>Isotani, Shuji ; Shimoyama, Hirofumi ; Yokota, Isao ; Noma, Yasuhiro ; Kitamura, Kousuke ; China, Toshiyuki ; Saito, Keisuke ; Hisasue, Shin-ichi ; Ide, Hisamitsu ; Muto, Satoru ; Yamaguchi, Raizo ; Ukimura, Osamu ; Gill, Inderbir S. ; Horie, Shigeo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-d163e287c39369bcaa9bfddedc99ffb2805dcf0c264b2e1e3106d28a12a8cf413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Automation</topic><topic>Cohort Studies</topic><topic>Female</topic><topic>Glomerular Filtration Rate</topic><topic>Humans</topic><topic>Kidney - pathology</topic><topic>Kidney Function Tests</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Multidetector Computed Tomography - methods</topic><topic>Nephrectomy</topic><topic>Nephrology</topic><topic>Organ Size</topic><topic>Original Article</topic><topic>Postoperative Period</topic><topic>Predictive Value of Tests</topic><topic>Urology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isotani, Shuji</creatorcontrib><creatorcontrib>Shimoyama, Hirofumi</creatorcontrib><creatorcontrib>Yokota, Isao</creatorcontrib><creatorcontrib>Noma, Yasuhiro</creatorcontrib><creatorcontrib>Kitamura, Kousuke</creatorcontrib><creatorcontrib>China, Toshiyuki</creatorcontrib><creatorcontrib>Saito, Keisuke</creatorcontrib><creatorcontrib>Hisasue, Shin-ichi</creatorcontrib><creatorcontrib>Ide, Hisamitsu</creatorcontrib><creatorcontrib>Muto, Satoru</creatorcontrib><creatorcontrib>Yamaguchi, Raizo</creatorcontrib><creatorcontrib>Ukimura, Osamu</creatorcontrib><creatorcontrib>Gill, Inderbir S.</creatorcontrib><creatorcontrib>Horie, Shigeo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Clinical and experimental nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isotani, Shuji</au><au>Shimoyama, Hirofumi</au><au>Yokota, Isao</au><au>Noma, Yasuhiro</au><au>Kitamura, Kousuke</au><au>China, Toshiyuki</au><au>Saito, Keisuke</au><au>Hisasue, Shin-ichi</au><au>Ide, Hisamitsu</au><au>Muto, Satoru</au><au>Yamaguchi, Raizo</au><au>Ukimura, Osamu</au><au>Gill, Inderbir S.</au><au>Horie, Shigeo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel prediction model of renal function after nephrectomy from automated renal volumetry with preoperative multidetector computed tomography (MDCT)</atitle><jtitle>Clinical and experimental nephrology</jtitle><stitle>Clin Exp Nephrol</stitle><addtitle>Clin Exp Nephrol</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>19</volume><issue>5</issue><spage>974</spage><epage>981</epage><pages>974-981</pages><issn>1342-1751</issn><eissn>1437-7799</eissn><coden>CENPFV</coden><abstract>Background and purpose The predictive model of postoperative renal function may impact on planning nephrectomy. To develop the novel predictive model using combination of clinical indices with computer volumetry to measure the preserved renal cortex volume (RCV) using multidetector computed tomography (MDCT), and to prospectively validate performance of the model. Patients and methods Total 60 patients undergoing radical nephrectomy from 2011 to 2013 participated, including a development cohort of 39 patients and an external validation cohort of 21 patients. RCV was calculated by voxel count using software (Vincent, FUJIFILM). Renal function before and after radical nephrectomy was assessed via the estimated glomerular filtration rate (eGFR). Factors affecting postoperative eGFR were examined by regression analysis to develop the novel model for predicting postoperative eGFR with a backward elimination method. The predictive model was externally validated and the performance of the model was compared with that of the previously reported models. Results The postoperative eGFR value was associated with age, preoperative eGFR, preserved renal parenchymal volume (RPV), preserved RCV, % of RPV alteration, and % of RCV alteration ( p  &lt; 0.01). The significant correlated variables for %eGFR alteration were %RCV preservation ( r  = 0.58, p  &lt; 0.01) and %RPV preservation ( r  = 0.54, p  &lt; 0.01). We developed our regression model as follows: postoperative eGFR = 57.87 − 0.55(age) − 15.01(body surface area) + 0.30(preoperative eGFR) + 52.92(%RCV preservation). Strong correlation was seen between postoperative eGFR and the calculated estimation model ( r  = 0.83; p  &lt; 0.001). The external validation cohort ( n  = 21) showed our model outperformed previously reported models. Conclusions Combining MDCT renal volumetry and clinical indices might yield an important tool for predicting postoperative renal function.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><pmid>25618493</pmid><doi>10.1007/s10157-015-1082-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1342-1751
ispartof Clinical and experimental nephrology, 2015-10, Vol.19 (5), p.974-981
issn 1342-1751
1437-7799
language eng
recordid cdi_proquest_miscellaneous_1768572012
source MEDLINE; SpringerLink Journals
subjects Adult
Aged
Aged, 80 and over
Automation
Cohort Studies
Female
Glomerular Filtration Rate
Humans
Kidney - pathology
Kidney Function Tests
Male
Medicine
Medicine & Public Health
Middle Aged
Multidetector Computed Tomography - methods
Nephrectomy
Nephrology
Organ Size
Original Article
Postoperative Period
Predictive Value of Tests
Urology
title Novel prediction model of renal function after nephrectomy from automated renal volumetry with preoperative multidetector computed tomography (MDCT)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20prediction%20model%20of%20renal%20function%20after%20nephrectomy%20from%20automated%20renal%20volumetry%20with%20preoperative%20multidetector%20computed%20tomography%20(MDCT)&rft.jtitle=Clinical%20and%20experimental%20nephrology&rft.au=Isotani,%20Shuji&rft.date=2015-10-01&rft.volume=19&rft.issue=5&rft.spage=974&rft.epage=981&rft.pages=974-981&rft.issn=1342-1751&rft.eissn=1437-7799&rft.coden=CENPFV&rft_id=info:doi/10.1007/s10157-015-1082-6&rft_dat=%3Cproquest_cross%3E1722422726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721879183&rft_id=info:pmid/25618493&rfr_iscdi=true