Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays
Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequalit...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2012-04, Vol.21 (4), p.586-596 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 596 |
---|---|
container_issue | 4 |
container_start_page | 586 |
container_title | Chinese physics B |
container_volume | 21 |
creator | Balasubramaniam, P. Kalpana, M. Rakkiyappan, R. |
description | Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method. |
doi_str_mv | 10.1088/1674-1056/21/4/048402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1768571029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>41272217</cqvip_id><sourcerecordid>1753553675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-3c89e20c03d892ee8de5d07fdf15c9d4bb2fb9da36af1ef44ef4c19066aeddc93</originalsourceid><addsrcrecordid>eNqNUU1rGzEUFKGBuk5_QkG59bK1Pne1x2LatGDoJTkLWR9eJbuSLWnrrH9919j43MNjeDAzvDcDwBeMvmEkxArXDasw4vWK4BVbISYYIndgQRAXFRWUfQCLG-cj-JTzK0I1RoQuwN-ND1YlOKiS_Ducl8Ooel8mqPb7FJXuoIsJ5inoLsXgT6r4GKCOoaTYw-igG0-nCWrb92M_GwU7JtXPUI4xvWV49KWDg3-3BhY_WGhsr6b8AO6d6rP9fMUlePn543n9q9r8efq9_r6pNGW8VFSL1hKkETWiJdYKY7lBjTMOc90att0St22NorVy2DrG5tG4RXWtrDG6pUvw9eI7_3IYbS5y8Pl8qwo2jlnipha8maP4HyqnnNN6hiXgF6pOMedkndwnP6g0SYzkuRJ5jlue45YESyYvlcy6x6uui2F38GF3EzJMGkJwQ_8BGBmOJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753553675</pqid></control><display><type>article</type><title>Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays</title><source>Institute of Physics Journals</source><creator>Balasubramaniam, P. ; Kalpana, M. ; Rakkiyappan, R.</creator><creatorcontrib>Balasubramaniam, P. ; Kalpana, M. ; Rakkiyappan, R.</creatorcontrib><description>Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/21/4/048402</identifier><language>eng</language><subject>Cellular ; Computer simulation ; Delay ; Fuzzy ; Fuzzy logic ; LMI方法 ; Lyapunov-Krasovskii泛函 ; Mathematical models ; Neural networks ; Synchronism ; Synchronization ; 同步控制 ; 时变时滞 ; 模糊规则 ; 混合 ; 线性矩阵不等式方法 ; 细胞神经网络</subject><ispartof>Chinese physics B, 2012-04, Vol.21 (4), p.586-596</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-3c89e20c03d892ee8de5d07fdf15c9d4bb2fb9da36af1ef44ef4c19066aeddc93</citedby><cites>FETCH-LOGICAL-c345t-3c89e20c03d892ee8de5d07fdf15c9d4bb2fb9da36af1ef44ef4c19066aeddc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Balasubramaniam, P.</creatorcontrib><creatorcontrib>Kalpana, M.</creatorcontrib><creatorcontrib>Rakkiyappan, R.</creatorcontrib><title>Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.</description><subject>Cellular</subject><subject>Computer simulation</subject><subject>Delay</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>LMI方法</subject><subject>Lyapunov-Krasovskii泛函</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>同步控制</subject><subject>时变时滞</subject><subject>模糊规则</subject><subject>混合</subject><subject>线性矩阵不等式方法</subject><subject>细胞神经网络</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNUU1rGzEUFKGBuk5_QkG59bK1Pne1x2LatGDoJTkLWR9eJbuSLWnrrH9919j43MNjeDAzvDcDwBeMvmEkxArXDasw4vWK4BVbISYYIndgQRAXFRWUfQCLG-cj-JTzK0I1RoQuwN-ND1YlOKiS_Ducl8Ooel8mqPb7FJXuoIsJ5inoLsXgT6r4GKCOoaTYw-igG0-nCWrb92M_GwU7JtXPUI4xvWV49KWDg3-3BhY_WGhsr6b8AO6d6rP9fMUlePn543n9q9r8efq9_r6pNGW8VFSL1hKkETWiJdYKY7lBjTMOc90att0St22NorVy2DrG5tG4RXWtrDG6pUvw9eI7_3IYbS5y8Pl8qwo2jlnipha8maP4HyqnnNN6hiXgF6pOMedkndwnP6g0SYzkuRJ5jlue45YESyYvlcy6x6uui2F38GF3EzJMGkJwQ_8BGBmOJg</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Balasubramaniam, P.</creator><creator>Kalpana, M.</creator><creator>Rakkiyappan, R.</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120401</creationdate><title>Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays</title><author>Balasubramaniam, P. ; Kalpana, M. ; Rakkiyappan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-3c89e20c03d892ee8de5d07fdf15c9d4bb2fb9da36af1ef44ef4c19066aeddc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cellular</topic><topic>Computer simulation</topic><topic>Delay</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>LMI方法</topic><topic>Lyapunov-Krasovskii泛函</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>同步控制</topic><topic>时变时滞</topic><topic>模糊规则</topic><topic>混合</topic><topic>线性矩阵不等式方法</topic><topic>细胞神经网络</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balasubramaniam, P.</creatorcontrib><creatorcontrib>Kalpana, M.</creatorcontrib><creatorcontrib>Rakkiyappan, R.</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balasubramaniam, P.</au><au>Kalpana, M.</au><au>Rakkiyappan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>21</volume><issue>4</issue><spage>586</spage><epage>596</epage><pages>586-596</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.</abstract><doi>10.1088/1674-1056/21/4/048402</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2012-04, Vol.21 (4), p.586-596 |
issn | 1674-1056 2058-3834 1741-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1768571029 |
source | Institute of Physics Journals |
subjects | Cellular Computer simulation Delay Fuzzy Fuzzy logic LMI方法 Lyapunov-Krasovskii泛函 Mathematical models Neural networks Synchronism Synchronization 同步控制 时变时滞 模糊规则 混合 线性矩阵不等式方法 细胞神经网络 |
title | Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T15%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20matrix%20inequality%20approach%20for%20synchronization%20control%20of%20fuzzy%20cellular%20neural%20networks%20with%20mixed%20time%20delays&rft.jtitle=Chinese%20physics%20B&rft.au=Balasubramaniam,%20P.&rft.date=2012-04-01&rft.volume=21&rft.issue=4&rft.spage=586&rft.epage=596&rft.pages=586-596&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/21/4/048402&rft_dat=%3Cproquest_cross%3E1753553675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753553675&rft_id=info:pmid/&rft_cqvip_id=41272217&rfr_iscdi=true |