Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays

Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequalit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2012-04, Vol.21 (4), p.586-596
Hauptverfasser: Balasubramaniam, P., Kalpana, M., Rakkiyappan, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 596
container_issue 4
container_start_page 586
container_title Chinese physics B
container_volume 21
creator Balasubramaniam, P.
Kalpana, M.
Rakkiyappan, R.
description Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.
doi_str_mv 10.1088/1674-1056/21/4/048402
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1768571029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>41272217</cqvip_id><sourcerecordid>1753553675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-3c89e20c03d892ee8de5d07fdf15c9d4bb2fb9da36af1ef44ef4c19066aeddc93</originalsourceid><addsrcrecordid>eNqNUU1rGzEUFKGBuk5_QkG59bK1Pne1x2LatGDoJTkLWR9eJbuSLWnrrH9919j43MNjeDAzvDcDwBeMvmEkxArXDasw4vWK4BVbISYYIndgQRAXFRWUfQCLG-cj-JTzK0I1RoQuwN-ND1YlOKiS_Ducl8Ooel8mqPb7FJXuoIsJ5inoLsXgT6r4GKCOoaTYw-igG0-nCWrb92M_GwU7JtXPUI4xvWV49KWDg3-3BhY_WGhsr6b8AO6d6rP9fMUlePn543n9q9r8efq9_r6pNGW8VFSL1hKkETWiJdYKY7lBjTMOc90att0St22NorVy2DrG5tG4RXWtrDG6pUvw9eI7_3IYbS5y8Pl8qwo2jlnipha8maP4HyqnnNN6hiXgF6pOMedkndwnP6g0SYzkuRJ5jlue45YESyYvlcy6x6uui2F38GF3EzJMGkJwQ_8BGBmOJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753553675</pqid></control><display><type>article</type><title>Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays</title><source>Institute of Physics Journals</source><creator>Balasubramaniam, P. ; Kalpana, M. ; Rakkiyappan, R.</creator><creatorcontrib>Balasubramaniam, P. ; Kalpana, M. ; Rakkiyappan, R.</creatorcontrib><description>Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/21/4/048402</identifier><language>eng</language><subject>Cellular ; Computer simulation ; Delay ; Fuzzy ; Fuzzy logic ; LMI方法 ; Lyapunov-Krasovskii泛函 ; Mathematical models ; Neural networks ; Synchronism ; Synchronization ; 同步控制 ; 时变时滞 ; 模糊规则 ; 混合 ; 线性矩阵不等式方法 ; 细胞神经网络</subject><ispartof>Chinese physics B, 2012-04, Vol.21 (4), p.586-596</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-3c89e20c03d892ee8de5d07fdf15c9d4bb2fb9da36af1ef44ef4c19066aeddc93</citedby><cites>FETCH-LOGICAL-c345t-3c89e20c03d892ee8de5d07fdf15c9d4bb2fb9da36af1ef44ef4c19066aeddc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Balasubramaniam, P.</creatorcontrib><creatorcontrib>Kalpana, M.</creatorcontrib><creatorcontrib>Rakkiyappan, R.</creatorcontrib><title>Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.</description><subject>Cellular</subject><subject>Computer simulation</subject><subject>Delay</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>LMI方法</subject><subject>Lyapunov-Krasovskii泛函</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>同步控制</subject><subject>时变时滞</subject><subject>模糊规则</subject><subject>混合</subject><subject>线性矩阵不等式方法</subject><subject>细胞神经网络</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNUU1rGzEUFKGBuk5_QkG59bK1Pne1x2LatGDoJTkLWR9eJbuSLWnrrH9919j43MNjeDAzvDcDwBeMvmEkxArXDasw4vWK4BVbISYYIndgQRAXFRWUfQCLG-cj-JTzK0I1RoQuwN-ND1YlOKiS_Ducl8Ooel8mqPb7FJXuoIsJ5inoLsXgT6r4GKCOoaTYw-igG0-nCWrb92M_GwU7JtXPUI4xvWV49KWDg3-3BhY_WGhsr6b8AO6d6rP9fMUlePn543n9q9r8efq9_r6pNGW8VFSL1hKkETWiJdYKY7lBjTMOc90att0St22NorVy2DrG5tG4RXWtrDG6pUvw9eI7_3IYbS5y8Pl8qwo2jlnipha8maP4HyqnnNN6hiXgF6pOMedkndwnP6g0SYzkuRJ5jlue45YESyYvlcy6x6uui2F38GF3EzJMGkJwQ_8BGBmOJg</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Balasubramaniam, P.</creator><creator>Kalpana, M.</creator><creator>Rakkiyappan, R.</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120401</creationdate><title>Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays</title><author>Balasubramaniam, P. ; Kalpana, M. ; Rakkiyappan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-3c89e20c03d892ee8de5d07fdf15c9d4bb2fb9da36af1ef44ef4c19066aeddc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cellular</topic><topic>Computer simulation</topic><topic>Delay</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>LMI方法</topic><topic>Lyapunov-Krasovskii泛函</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>同步控制</topic><topic>时变时滞</topic><topic>模糊规则</topic><topic>混合</topic><topic>线性矩阵不等式方法</topic><topic>细胞神经网络</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balasubramaniam, P.</creatorcontrib><creatorcontrib>Kalpana, M.</creatorcontrib><creatorcontrib>Rakkiyappan, R.</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balasubramaniam, P.</au><au>Kalpana, M.</au><au>Rakkiyappan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>21</volume><issue>4</issue><spage>586</spage><epage>596</epage><pages>586-596</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.</abstract><doi>10.1088/1674-1056/21/4/048402</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2012-04, Vol.21 (4), p.586-596
issn 1674-1056
2058-3834
1741-4199
language eng
recordid cdi_proquest_miscellaneous_1768571029
source Institute of Physics Journals
subjects Cellular
Computer simulation
Delay
Fuzzy
Fuzzy logic
LMI方法
Lyapunov-Krasovskii泛函
Mathematical models
Neural networks
Synchronism
Synchronization
同步控制
时变时滞
模糊规则
混合
线性矩阵不等式方法
细胞神经网络
title Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T15%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20matrix%20inequality%20approach%20for%20synchronization%20control%20of%20fuzzy%20cellular%20neural%20networks%20with%20mixed%20time%20delays&rft.jtitle=Chinese%20physics%20B&rft.au=Balasubramaniam,%20P.&rft.date=2012-04-01&rft.volume=21&rft.issue=4&rft.spage=586&rft.epage=596&rft.pages=586-596&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/21/4/048402&rft_dat=%3Cproquest_cross%3E1753553675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753553675&rft_id=info:pmid/&rft_cqvip_id=41272217&rfr_iscdi=true