Design and synthesis of novel selective anaplastic lymphoma kinase inhibitors
[Display omitted] Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase belonging to the insulin receptor superfamily. Expression of ALK in normal human tissues is only found in a subset of neural cells, however it is involved in the genesis of several cancers through genetic aberrations in...
Gespeichert in:
Veröffentlicht in: | Bioorganic & medicinal chemistry letters 2016-02, Vol.26 (3), p.1090-1096 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase belonging to the insulin receptor superfamily. Expression of ALK in normal human tissues is only found in a subset of neural cells, however it is involved in the genesis of several cancers through genetic aberrations involving translocation of the kinase domain with multiple fusion partners (e.g., NPM-ALK in anaplastic large cell lymphoma ALCL or EML4-ALK in non-small cell lung cancer) or activating mutations in the full-length receptor resulting in ligand-independent constitutive activation (e.g., neuroblastoma). Here we are reporting the discovery of novel and selective anaplastic lymphoma kinase inhibitors from specific modifications of the 2,4-diaminopyridine core present in TAE684 and LDK378. Synthesis, structure activity relationships (SAR), absorption, distribution, metabolism, and excretion (ADME) profile, and in vivo efficacy in a mouse xenograft model of anaplastic large cell lymphoma are described. |
---|---|
ISSN: | 0960-894X 1464-3405 |
DOI: | 10.1016/j.bmcl.2015.11.049 |