Complementary resistance genes in wheat selection ‘Avocet R’ confer resistance to stripe rust
KEY MESSAGE : Complementary genes for resistance to wheat stripe rust in an Avocet selection mapped to chromosome arms 3DL and 5BL. Susceptible Avocet selections lacked the 5BL gene due to a chromosomal deletion. This study reports the inheritance and genetic mapping of the YrA (temporary name of co...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2016-01, Vol.129 (1), p.65-76 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Theoretical and applied genetics |
container_volume | 129 |
creator | Dracatos, Peter M. Zhang, Peng Park, Robert F. McIntosh, Robert A. Wellings, Colin R. |
description | KEY MESSAGE : Complementary genes for resistance to wheat stripe rust in an Avocet selection mapped to chromosome arms 3DL and 5BL. Susceptible Avocet selections lacked the 5BL gene due to a chromosomal deletion. This study reports the inheritance and genetic mapping of the YrA (temporary name of convenience to describe the specificity) seedling resistance to wheat stripe rust (caused by Puccinia striiformis f. sp. tritici; Pst) in a resistant selection of the Australian cv. Avocet [Avocet R (AvR)–AUS 90660]. Genetic analysis was performed on F₂ populations and F₃ generation families from crosses between wheats that carried and lacked the YrA resistance. Greenhouse seedling tests with two avirulent Pst pathotypes (104 E137 A− and 108 E141 A−) confirmed that the YrA resistance was inherited as two complementary dominant genes. Ninety-two doubled haploid (DH) lines from a cross between the Australian cv. Teal (Pst susceptible) and AvR were used for DArT-Seq genotypic analysis to map the seedling resistance. Marker-trait association analysis using 9035 DArT-Seq loci mapped the genes to the long arms of chromosomes 3D (3DL) and 5B (5BL), respectively. F₂ populations from crosses between susceptible DH lines that carried either the 3DL or 5BL marker genotypes confirmed the complementary gene model. Fluorescence in situ hybridization (FISH) analysis determined that Teal carries a reciprocal T5B–7B translocation. FISH analysis also identified a 5BL chromosomal deletion in Avocet S relative to AvR that further validated the complementary gene model and possibly explained the heterogeneity of closely related wheats carrying the YrA resistance. The individual loci of the complementary YrA resistance were designated Yr73 (3DL) and Yr74 (5BL). Candidate single gene reference stocks will be permanently accessioned following cytological analysis to avoid the T5B–7B translocation. |
doi_str_mv | 10.1007/s00122-015-2609-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1768569341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A442810491</galeid><sourcerecordid>A442810491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-fa76d918aaf1ac48a5d4c033c5345d983e27b0579276b04f78d36b3074726b693</originalsourceid><addsrcrecordid>eNqNks1u1DAUhS1ERYfCA7CBSGxgkXL9FyfL0YifSpWQWrq2HOcmpEriwXb42fUx4PX6JHiUUjoIIeSFJfs7xzq-h5AnFI4pgHoVAChjOVCZswKqXN0jKyo4yxkT7D5ZAQjIpZLskDwM4RIAmAT-gByyQnBesnJFzMaN2wFHnKLx3zKPoQ_RTBazDicMWT9lXz6iiVnAAW3s3ZRdX31ff3YWY3Z2ffUjs25q0d9VRpeF6PstZn4O8RE5aM0Q8PHNfkQu3rz-sHmXn75_e7JZn-a2AIh5a1TRVLQ0pqXGitLIRljg3EouZFOVHJmqQaqKqaIG0aqy4UXNQQnFirqo-BF5sfhuvfs0Y4h67IPFYTATujloqopSJk7Q_0GhgiIZJ_T5H-ilm_2UgiRK8koKXla_qc4MqPupddEbuzPVayFYSUFUu2eP_0Kl1eDYp2_Etk_ne4KXe4LERPwaOzOHoE_Oz_ZZurDWuxA8tnrr-zHNVFPQu7bopS06tUXv2qJV0jy9CTfXIza3il_1SABbgJCupg79nfT_cH22iFrjtOl8H_TFOQOaxkwFU0zyn58z0Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753954389</pqid></control><display><type>article</type><title>Complementary resistance genes in wheat selection ‘Avocet R’ confer resistance to stripe rust</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><creator>Dracatos, Peter M. ; Zhang, Peng ; Park, Robert F. ; McIntosh, Robert A. ; Wellings, Colin R.</creator><creatorcontrib>Dracatos, Peter M. ; Zhang, Peng ; Park, Robert F. ; McIntosh, Robert A. ; Wellings, Colin R.</creatorcontrib><description>KEY MESSAGE : Complementary genes for resistance to wheat stripe rust in an Avocet selection mapped to chromosome arms 3DL and 5BL. Susceptible Avocet selections lacked the 5BL gene due to a chromosomal deletion. This study reports the inheritance and genetic mapping of the YrA (temporary name of convenience to describe the specificity) seedling resistance to wheat stripe rust (caused by Puccinia striiformis f. sp. tritici; Pst) in a resistant selection of the Australian cv. Avocet [Avocet R (AvR)–AUS 90660]. Genetic analysis was performed on F₂ populations and F₃ generation families from crosses between wheats that carried and lacked the YrA resistance. Greenhouse seedling tests with two avirulent Pst pathotypes (104 E137 A− and 108 E141 A−) confirmed that the YrA resistance was inherited as two complementary dominant genes. Ninety-two doubled haploid (DH) lines from a cross between the Australian cv. Teal (Pst susceptible) and AvR were used for DArT-Seq genotypic analysis to map the seedling resistance. Marker-trait association analysis using 9035 DArT-Seq loci mapped the genes to the long arms of chromosomes 3D (3DL) and 5B (5BL), respectively. F₂ populations from crosses between susceptible DH lines that carried either the 3DL or 5BL marker genotypes confirmed the complementary gene model. Fluorescence in situ hybridization (FISH) analysis determined that Teal carries a reciprocal T5B–7B translocation. FISH analysis also identified a 5BL chromosomal deletion in Avocet S relative to AvR that further validated the complementary gene model and possibly explained the heterogeneity of closely related wheats carrying the YrA resistance. The individual loci of the complementary YrA resistance were designated Yr73 (3DL) and Yr74 (5BL). Candidate single gene reference stocks will be permanently accessioned following cytological analysis to avoid the T5B–7B translocation.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-015-2609-7</identifier><identifier>PMID: 26433828</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Basidiomycota ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Chromosome Mapping ; Chromosomes ; Crosses, Genetic ; Cultivars ; Disease resistance (Plants) ; Disease Resistance - genetics ; Diseases and pests ; Gene expression ; Genes ; Genes, Dominant ; Genes, Plant ; Genetic aspects ; Genetic Linkage ; Genotype ; Haploidy ; Health aspects ; In Situ Hybridization, Fluorescence ; Inheritance Patterns ; Life Sciences ; Observations ; Original Article ; Pathogens ; Phenotype ; Plant Biochemistry ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; Plant-pathogen relationships ; Prevention ; Puccinia striiformis ; Rusts (Fungi) ; Triticum - genetics ; Triticum - microbiology ; Triticum aestivum ; Virulence ; Wheat</subject><ispartof>Theoretical and applied genetics, 2016-01, Vol.129 (1), p.65-76</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-fa76d918aaf1ac48a5d4c033c5345d983e27b0579276b04f78d36b3074726b693</citedby><cites>FETCH-LOGICAL-c600t-fa76d918aaf1ac48a5d4c033c5345d983e27b0579276b04f78d36b3074726b693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-015-2609-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-015-2609-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26433828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dracatos, Peter M.</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Park, Robert F.</creatorcontrib><creatorcontrib>McIntosh, Robert A.</creatorcontrib><creatorcontrib>Wellings, Colin R.</creatorcontrib><title>Complementary resistance genes in wheat selection ‘Avocet R’ confer resistance to stripe rust</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>KEY MESSAGE : Complementary genes for resistance to wheat stripe rust in an Avocet selection mapped to chromosome arms 3DL and 5BL. Susceptible Avocet selections lacked the 5BL gene due to a chromosomal deletion. This study reports the inheritance and genetic mapping of the YrA (temporary name of convenience to describe the specificity) seedling resistance to wheat stripe rust (caused by Puccinia striiformis f. sp. tritici; Pst) in a resistant selection of the Australian cv. Avocet [Avocet R (AvR)–AUS 90660]. Genetic analysis was performed on F₂ populations and F₃ generation families from crosses between wheats that carried and lacked the YrA resistance. Greenhouse seedling tests with two avirulent Pst pathotypes (104 E137 A− and 108 E141 A−) confirmed that the YrA resistance was inherited as two complementary dominant genes. Ninety-two doubled haploid (DH) lines from a cross between the Australian cv. Teal (Pst susceptible) and AvR were used for DArT-Seq genotypic analysis to map the seedling resistance. Marker-trait association analysis using 9035 DArT-Seq loci mapped the genes to the long arms of chromosomes 3D (3DL) and 5B (5BL), respectively. F₂ populations from crosses between susceptible DH lines that carried either the 3DL or 5BL marker genotypes confirmed the complementary gene model. Fluorescence in situ hybridization (FISH) analysis determined that Teal carries a reciprocal T5B–7B translocation. FISH analysis also identified a 5BL chromosomal deletion in Avocet S relative to AvR that further validated the complementary gene model and possibly explained the heterogeneity of closely related wheats carrying the YrA resistance. The individual loci of the complementary YrA resistance were designated Yr73 (3DL) and Yr74 (5BL). Candidate single gene reference stocks will be permanently accessioned following cytological analysis to avoid the T5B–7B translocation.</description><subject>Agriculture</subject><subject>Basidiomycota</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Crosses, Genetic</subject><subject>Cultivars</subject><subject>Disease resistance (Plants)</subject><subject>Disease Resistance - genetics</subject><subject>Diseases and pests</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genes, Dominant</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genetic Linkage</subject><subject>Genotype</subject><subject>Haploidy</subject><subject>Health aspects</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Inheritance Patterns</subject><subject>Life Sciences</subject><subject>Observations</subject><subject>Original Article</subject><subject>Pathogens</subject><subject>Phenotype</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant-pathogen relationships</subject><subject>Prevention</subject><subject>Puccinia striiformis</subject><subject>Rusts (Fungi)</subject><subject>Triticum - genetics</subject><subject>Triticum - microbiology</subject><subject>Triticum aestivum</subject><subject>Virulence</subject><subject>Wheat</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNks1u1DAUhS1ERYfCA7CBSGxgkXL9FyfL0YifSpWQWrq2HOcmpEriwXb42fUx4PX6JHiUUjoIIeSFJfs7xzq-h5AnFI4pgHoVAChjOVCZswKqXN0jKyo4yxkT7D5ZAQjIpZLskDwM4RIAmAT-gByyQnBesnJFzMaN2wFHnKLx3zKPoQ_RTBazDicMWT9lXz6iiVnAAW3s3ZRdX31ff3YWY3Z2ffUjs25q0d9VRpeF6PstZn4O8RE5aM0Q8PHNfkQu3rz-sHmXn75_e7JZn-a2AIh5a1TRVLQ0pqXGitLIRljg3EouZFOVHJmqQaqKqaIG0aqy4UXNQQnFirqo-BF5sfhuvfs0Y4h67IPFYTATujloqopSJk7Q_0GhgiIZJ_T5H-ilm_2UgiRK8koKXla_qc4MqPupddEbuzPVayFYSUFUu2eP_0Kl1eDYp2_Etk_ne4KXe4LERPwaOzOHoE_Oz_ZZurDWuxA8tnrr-zHNVFPQu7bopS06tUXv2qJV0jy9CTfXIza3il_1SABbgJCupg79nfT_cH22iFrjtOl8H_TFOQOaxkwFU0zyn58z0Ow</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Dracatos, Peter M.</creator><creator>Zhang, Peng</creator><creator>Park, Robert F.</creator><creator>McIntosh, Robert A.</creator><creator>Wellings, Colin R.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20160101</creationdate><title>Complementary resistance genes in wheat selection ‘Avocet R’ confer resistance to stripe rust</title><author>Dracatos, Peter M. ; Zhang, Peng ; Park, Robert F. ; McIntosh, Robert A. ; Wellings, Colin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-fa76d918aaf1ac48a5d4c033c5345d983e27b0579276b04f78d36b3074726b693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agriculture</topic><topic>Basidiomycota</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Crosses, Genetic</topic><topic>Cultivars</topic><topic>Disease resistance (Plants)</topic><topic>Disease Resistance - genetics</topic><topic>Diseases and pests</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genes, Dominant</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genetic Linkage</topic><topic>Genotype</topic><topic>Haploidy</topic><topic>Health aspects</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Inheritance Patterns</topic><topic>Life Sciences</topic><topic>Observations</topic><topic>Original Article</topic><topic>Pathogens</topic><topic>Phenotype</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant-pathogen relationships</topic><topic>Prevention</topic><topic>Puccinia striiformis</topic><topic>Rusts (Fungi)</topic><topic>Triticum - genetics</topic><topic>Triticum - microbiology</topic><topic>Triticum aestivum</topic><topic>Virulence</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dracatos, Peter M.</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Park, Robert F.</creatorcontrib><creatorcontrib>McIntosh, Robert A.</creatorcontrib><creatorcontrib>Wellings, Colin R.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dracatos, Peter M.</au><au>Zhang, Peng</au><au>Park, Robert F.</au><au>McIntosh, Robert A.</au><au>Wellings, Colin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complementary resistance genes in wheat selection ‘Avocet R’ confer resistance to stripe rust</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>129</volume><issue>1</issue><spage>65</spage><epage>76</epage><pages>65-76</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>KEY MESSAGE : Complementary genes for resistance to wheat stripe rust in an Avocet selection mapped to chromosome arms 3DL and 5BL. Susceptible Avocet selections lacked the 5BL gene due to a chromosomal deletion. This study reports the inheritance and genetic mapping of the YrA (temporary name of convenience to describe the specificity) seedling resistance to wheat stripe rust (caused by Puccinia striiformis f. sp. tritici; Pst) in a resistant selection of the Australian cv. Avocet [Avocet R (AvR)–AUS 90660]. Genetic analysis was performed on F₂ populations and F₃ generation families from crosses between wheats that carried and lacked the YrA resistance. Greenhouse seedling tests with two avirulent Pst pathotypes (104 E137 A− and 108 E141 A−) confirmed that the YrA resistance was inherited as two complementary dominant genes. Ninety-two doubled haploid (DH) lines from a cross between the Australian cv. Teal (Pst susceptible) and AvR were used for DArT-Seq genotypic analysis to map the seedling resistance. Marker-trait association analysis using 9035 DArT-Seq loci mapped the genes to the long arms of chromosomes 3D (3DL) and 5B (5BL), respectively. F₂ populations from crosses between susceptible DH lines that carried either the 3DL or 5BL marker genotypes confirmed the complementary gene model. Fluorescence in situ hybridization (FISH) analysis determined that Teal carries a reciprocal T5B–7B translocation. FISH analysis also identified a 5BL chromosomal deletion in Avocet S relative to AvR that further validated the complementary gene model and possibly explained the heterogeneity of closely related wheats carrying the YrA resistance. The individual loci of the complementary YrA resistance were designated Yr73 (3DL) and Yr74 (5BL). Candidate single gene reference stocks will be permanently accessioned following cytological analysis to avoid the T5B–7B translocation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26433828</pmid><doi>10.1007/s00122-015-2609-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2016-01, Vol.129 (1), p.65-76 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_1768569341 |
source | MEDLINE; Springer Online Journals Complete |
subjects | Agriculture Basidiomycota Biochemistry Biomedical and Life Sciences Biotechnology Chromosome Mapping Chromosomes Crosses, Genetic Cultivars Disease resistance (Plants) Disease Resistance - genetics Diseases and pests Gene expression Genes Genes, Dominant Genes, Plant Genetic aspects Genetic Linkage Genotype Haploidy Health aspects In Situ Hybridization, Fluorescence Inheritance Patterns Life Sciences Observations Original Article Pathogens Phenotype Plant Biochemistry Plant Breeding/Biotechnology Plant Diseases - genetics Plant Diseases - microbiology Plant Genetics and Genomics Plant-pathogen relationships Prevention Puccinia striiformis Rusts (Fungi) Triticum - genetics Triticum - microbiology Triticum aestivum Virulence Wheat |
title | Complementary resistance genes in wheat selection ‘Avocet R’ confer resistance to stripe rust |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complementary%20resistance%20genes%20in%20wheat%20selection%20%E2%80%98Avocet%20R%E2%80%99%20confer%20resistance%20to%20stripe%20rust&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Dracatos,%20Peter%20M.&rft.date=2016-01-01&rft.volume=129&rft.issue=1&rft.spage=65&rft.epage=76&rft.pages=65-76&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-015-2609-7&rft_dat=%3Cgale_proqu%3EA442810491%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753954389&rft_id=info:pmid/26433828&rft_galeid=A442810491&rfr_iscdi=true |