Segmentation and optical flow estimation in cardiac CT sequences based on a spatiotemporal PDM with a correction scheme and the Hermite transform

Abstract Purpose: The left ventricle and the myocardium are two of the most important parts of the heart used for cardiac evaluation. In this work a novel framework that combines two methods to isolate and display functional characteristics of the heart using sequences of cardiac computed tomography...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2016-02, Vol.69, p.189-202
Hauptverfasser: Barba-J, Leiner, Moya-Albor, Ernesto, Escalante-Ramírez, Boris, Brieva, Jorge, Vallejo Venegas, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue
container_start_page 189
container_title Computers in biology and medicine
container_volume 69
creator Barba-J, Leiner
Moya-Albor, Ernesto
Escalante-Ramírez, Boris
Brieva, Jorge
Vallejo Venegas, Enrique
description Abstract Purpose: The left ventricle and the myocardium are two of the most important parts of the heart used for cardiac evaluation. In this work a novel framework that combines two methods to isolate and display functional characteristics of the heart using sequences of cardiac computed tomography (CT) is proposed. A shape extraction method, which includes a new segmentation correction scheme, is performed jointly with a motion estimation approach. Methods: For the segmentation task we built a Spatiotemporal Point Distribution Model (STPDM) that encodes spatial and temporal variability of the heart structures. Intensity and gradient information guide the STPDM. We present a novel method to correct segmentation errors obtained with the STPDM. It consists of a deformable scheme that combines three types of image features: local histograms, gradients and binary patterns. A bio-inspired image representation model based on the Hermite transform is used for motion estimation. The segmentation allows isolating the structure of interest while the motion estimation can be used to characterize the movement of the complete heart muscle. Results: The work is evaluated with several sequences of cardiac CT. The left ventricle was used for evaluation. Several metrics were used to validate the proposed framework. The efficiency of our method is also demonstrated by comparing with other techniques. Conclusion: The implemented tool can enable physicians to better identify mechanical problems. The new correction scheme substantially improves the segmentation performance. Reported results demonstrate that this work is a promising technique for heart mechanical assessment.
doi_str_mv 10.1016/j.compbiomed.2015.12.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1768569293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S001048251500414X</els_id><sourcerecordid>3953819921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-e5fb61e4616dacf3a4170f878210195d7537efa1b92b07e1fc90a3d172d0e6393</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhLyBLXLhkmbHzeUGC5aNIRSC1SNwsx5mwXpI42F6q_gz-Mc5uq0o99TSHed53NPMOYxxhjYDlm93auHFurRupWwvAYo1iDQIfsRXWVZNBIfPHbAWAkOW1KE7YsxB2AJCDhKfsRJRVJZtcrti_C_o10hR1tG7ieuq4m6M1euD94K44hWjHY89O3GjfWW345pIH-rOnyVDgrQ6UVEnMw7ygkcbZ-eTw_cNXfmXjNnWM857MwSeYLY10GBW3xM_IjzYSj15PoXd-fM6e9HoI9OKmnrIfnz5ebs6y82-fv2zenWcmbyBmVPRtiZSXWHba9FLnWEFfV7VIF2qKripkRb3GthEtVIS9aUDLDivRAZWykafs9dF39i7tEqIabTA0DHoitw8Kq7IuykY08iFogShQQkJf3UN3bu-ntMiBkrkQUCeqPlLGuxA89Wr26c7-WiGoJWG1U3cJqyVhhUKlhJP05c2Afbv0boW3kSbg_RGgdLy_lrwKxi5RdXaJQHXOPmTK23smZrDT8he_6ZrC3U4qJIG6WD5teTQs0o9h_lP-B7_a0d8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765342208</pqid></control><display><type>article</type><title>Segmentation and optical flow estimation in cardiac CT sequences based on a spatiotemporal PDM with a correction scheme and the Hermite transform</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Barba-J, Leiner ; Moya-Albor, Ernesto ; Escalante-Ramírez, Boris ; Brieva, Jorge ; Vallejo Venegas, Enrique</creator><creatorcontrib>Barba-J, Leiner ; Moya-Albor, Ernesto ; Escalante-Ramírez, Boris ; Brieva, Jorge ; Vallejo Venegas, Enrique</creatorcontrib><description>Abstract Purpose: The left ventricle and the myocardium are two of the most important parts of the heart used for cardiac evaluation. In this work a novel framework that combines two methods to isolate and display functional characteristics of the heart using sequences of cardiac computed tomography (CT) is proposed. A shape extraction method, which includes a new segmentation correction scheme, is performed jointly with a motion estimation approach. Methods: For the segmentation task we built a Spatiotemporal Point Distribution Model (STPDM) that encodes spatial and temporal variability of the heart structures. Intensity and gradient information guide the STPDM. We present a novel method to correct segmentation errors obtained with the STPDM. It consists of a deformable scheme that combines three types of image features: local histograms, gradients and binary patterns. A bio-inspired image representation model based on the Hermite transform is used for motion estimation. The segmentation allows isolating the structure of interest while the motion estimation can be used to characterize the movement of the complete heart muscle. Results: The work is evaluated with several sequences of cardiac CT. The left ventricle was used for evaluation. Several metrics were used to validate the proposed framework. The efficiency of our method is also demonstrated by comparing with other techniques. Conclusion: The implemented tool can enable physicians to better identify mechanical problems. The new correction scheme substantially improves the segmentation performance. Reported results demonstrate that this work is a promising technique for heart mechanical assessment.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2015.12.021</identifier><identifier>PMID: 26773943</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Cardiac CT sequences ; Female ; Heart ; Heart Ventricles - diagnostic imaging ; Hermite transform ; Humans ; Image Processing, Computer-Assisted ; Internal Medicine ; Local image features ; Male ; Mathematical models ; Methods ; Myocardium ; Noise ; Optical flow ; Other ; Segmentation ; Spatiotemporal point distribution model ; Tomography, X-Ray Computed - methods ; Volumetric analysis</subject><ispartof>Computers in biology and medicine, 2016-02, Vol.69, p.189-202</ispartof><rights>Elsevier Ltd</rights><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-e5fb61e4616dacf3a4170f878210195d7537efa1b92b07e1fc90a3d172d0e6393</citedby><cites>FETCH-LOGICAL-c490t-e5fb61e4616dacf3a4170f878210195d7537efa1b92b07e1fc90a3d172d0e6393</cites><orcidid>0000-0002-6203-8974 ; 0000-0002-9637-786X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1765342208?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26773943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barba-J, Leiner</creatorcontrib><creatorcontrib>Moya-Albor, Ernesto</creatorcontrib><creatorcontrib>Escalante-Ramírez, Boris</creatorcontrib><creatorcontrib>Brieva, Jorge</creatorcontrib><creatorcontrib>Vallejo Venegas, Enrique</creatorcontrib><title>Segmentation and optical flow estimation in cardiac CT sequences based on a spatiotemporal PDM with a correction scheme and the Hermite transform</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract Purpose: The left ventricle and the myocardium are two of the most important parts of the heart used for cardiac evaluation. In this work a novel framework that combines two methods to isolate and display functional characteristics of the heart using sequences of cardiac computed tomography (CT) is proposed. A shape extraction method, which includes a new segmentation correction scheme, is performed jointly with a motion estimation approach. Methods: For the segmentation task we built a Spatiotemporal Point Distribution Model (STPDM) that encodes spatial and temporal variability of the heart structures. Intensity and gradient information guide the STPDM. We present a novel method to correct segmentation errors obtained with the STPDM. It consists of a deformable scheme that combines three types of image features: local histograms, gradients and binary patterns. A bio-inspired image representation model based on the Hermite transform is used for motion estimation. The segmentation allows isolating the structure of interest while the motion estimation can be used to characterize the movement of the complete heart muscle. Results: The work is evaluated with several sequences of cardiac CT. The left ventricle was used for evaluation. Several metrics were used to validate the proposed framework. The efficiency of our method is also demonstrated by comparing with other techniques. Conclusion: The implemented tool can enable physicians to better identify mechanical problems. The new correction scheme substantially improves the segmentation performance. Reported results demonstrate that this work is a promising technique for heart mechanical assessment.</description><subject>Algorithms</subject><subject>Cardiac CT sequences</subject><subject>Female</subject><subject>Heart</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>Hermite transform</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Internal Medicine</subject><subject>Local image features</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Myocardium</subject><subject>Noise</subject><subject>Optical flow</subject><subject>Other</subject><subject>Segmentation</subject><subject>Spatiotemporal point distribution model</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Volumetric analysis</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk1v1DAQhi0EokvhLyBLXLhkmbHzeUGC5aNIRSC1SNwsx5mwXpI42F6q_gz-Mc5uq0o99TSHed53NPMOYxxhjYDlm93auHFurRupWwvAYo1iDQIfsRXWVZNBIfPHbAWAkOW1KE7YsxB2AJCDhKfsRJRVJZtcrti_C_o10hR1tG7ieuq4m6M1euD94K44hWjHY89O3GjfWW345pIH-rOnyVDgrQ6UVEnMw7ygkcbZ-eTw_cNXfmXjNnWM857MwSeYLY10GBW3xM_IjzYSj15PoXd-fM6e9HoI9OKmnrIfnz5ebs6y82-fv2zenWcmbyBmVPRtiZSXWHba9FLnWEFfV7VIF2qKripkRb3GthEtVIS9aUDLDivRAZWykafs9dF39i7tEqIabTA0DHoitw8Kq7IuykY08iFogShQQkJf3UN3bu-ntMiBkrkQUCeqPlLGuxA89Wr26c7-WiGoJWG1U3cJqyVhhUKlhJP05c2Afbv0boW3kSbg_RGgdLy_lrwKxi5RdXaJQHXOPmTK23smZrDT8he_6ZrC3U4qJIG6WD5teTQs0o9h_lP-B7_a0d8</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Barba-J, Leiner</creator><creator>Moya-Albor, Ernesto</creator><creator>Escalante-Ramírez, Boris</creator><creator>Brieva, Jorge</creator><creator>Vallejo Venegas, Enrique</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><orcidid>https://orcid.org/0000-0002-6203-8974</orcidid><orcidid>https://orcid.org/0000-0002-9637-786X</orcidid></search><sort><creationdate>20160201</creationdate><title>Segmentation and optical flow estimation in cardiac CT sequences based on a spatiotemporal PDM with a correction scheme and the Hermite transform</title><author>Barba-J, Leiner ; Moya-Albor, Ernesto ; Escalante-Ramírez, Boris ; Brieva, Jorge ; Vallejo Venegas, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-e5fb61e4616dacf3a4170f878210195d7537efa1b92b07e1fc90a3d172d0e6393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Cardiac CT sequences</topic><topic>Female</topic><topic>Heart</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>Hermite transform</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Internal Medicine</topic><topic>Local image features</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Myocardium</topic><topic>Noise</topic><topic>Optical flow</topic><topic>Other</topic><topic>Segmentation</topic><topic>Spatiotemporal point distribution model</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Volumetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barba-J, Leiner</creatorcontrib><creatorcontrib>Moya-Albor, Ernesto</creatorcontrib><creatorcontrib>Escalante-Ramírez, Boris</creatorcontrib><creatorcontrib>Brieva, Jorge</creatorcontrib><creatorcontrib>Vallejo Venegas, Enrique</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barba-J, Leiner</au><au>Moya-Albor, Ernesto</au><au>Escalante-Ramírez, Boris</au><au>Brieva, Jorge</au><au>Vallejo Venegas, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation and optical flow estimation in cardiac CT sequences based on a spatiotemporal PDM with a correction scheme and the Hermite transform</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>69</volume><spage>189</spage><epage>202</epage><pages>189-202</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract Purpose: The left ventricle and the myocardium are two of the most important parts of the heart used for cardiac evaluation. In this work a novel framework that combines two methods to isolate and display functional characteristics of the heart using sequences of cardiac computed tomography (CT) is proposed. A shape extraction method, which includes a new segmentation correction scheme, is performed jointly with a motion estimation approach. Methods: For the segmentation task we built a Spatiotemporal Point Distribution Model (STPDM) that encodes spatial and temporal variability of the heart structures. Intensity and gradient information guide the STPDM. We present a novel method to correct segmentation errors obtained with the STPDM. It consists of a deformable scheme that combines three types of image features: local histograms, gradients and binary patterns. A bio-inspired image representation model based on the Hermite transform is used for motion estimation. The segmentation allows isolating the structure of interest while the motion estimation can be used to characterize the movement of the complete heart muscle. Results: The work is evaluated with several sequences of cardiac CT. The left ventricle was used for evaluation. Several metrics were used to validate the proposed framework. The efficiency of our method is also demonstrated by comparing with other techniques. Conclusion: The implemented tool can enable physicians to better identify mechanical problems. The new correction scheme substantially improves the segmentation performance. Reported results demonstrate that this work is a promising technique for heart mechanical assessment.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>26773943</pmid><doi>10.1016/j.compbiomed.2015.12.021</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6203-8974</orcidid><orcidid>https://orcid.org/0000-0002-9637-786X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2016-02, Vol.69, p.189-202
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_1768569293
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Algorithms
Cardiac CT sequences
Female
Heart
Heart Ventricles - diagnostic imaging
Hermite transform
Humans
Image Processing, Computer-Assisted
Internal Medicine
Local image features
Male
Mathematical models
Methods
Myocardium
Noise
Optical flow
Other
Segmentation
Spatiotemporal point distribution model
Tomography, X-Ray Computed - methods
Volumetric analysis
title Segmentation and optical flow estimation in cardiac CT sequences based on a spatiotemporal PDM with a correction scheme and the Hermite transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A37%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20and%20optical%20flow%20estimation%20in%20cardiac%20CT%20sequences%20based%20on%20a%20spatiotemporal%20PDM%20with%20a%20correction%20scheme%20and%20the%20Hermite%20transform&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Barba-J,%20Leiner&rft.date=2016-02-01&rft.volume=69&rft.spage=189&rft.epage=202&rft.pages=189-202&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2015.12.021&rft_dat=%3Cproquest_cross%3E3953819921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765342208&rft_id=info:pmid/26773943&rft_els_id=1_s2_0_S001048251500414X&rfr_iscdi=true