Biosorption of Cu(II) by immobilized microalgae using silica: kinetic, equilibrium, and thermodynamic study
Immobilized microalgae using silica (IMS) from Micractinium reisseri KGE33 was synthesized through a sol-gel reaction. Green algal waste biomass, the residue of M. reisseri KGE33 after oil extraction, was used as the biomaterial. The adsorption of Cu(II) on IMS was tested in batch experiments with v...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2016-01, Vol.23 (2), p.1025-1034 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1034 |
---|---|
container_issue | 2 |
container_start_page | 1025 |
container_title | Environmental science and pollution research international |
container_volume | 23 |
creator | Lee, Hongkyun Shim, Eunjung Yun, Hyun-Shik Park, Young-Tae Kim, Dohyeong Ji, Min-Kyu Kim, Chi-Kyung Shin, Won-Sik Choi, Jaeyoung |
description | Immobilized microalgae using silica (IMS) from Micractinium reisseri KGE33 was synthesized through a sol-gel reaction. Green algal waste biomass, the residue of M. reisseri KGE33 after oil extraction, was used as the biomaterial. The adsorption of Cu(II) on IMS was tested in batch experiments with varying algal doses, pH, contact times, initial Cu(II) concentrations, and temperatures. Three types of IMSs (IMS 14, 70, and 100) were synthesized according to different algal doses. The removal efficiency of Cu(II) in the aqueous phase was in the following order: IMS 14 (77.0 %) IMS 14 (1.282 mg g⁻¹). The pseudo-second-order equation fitted the kinetics data well, and the value of the second-order rate constant increased with increasing algal dose. Gibbs free energies (ΔG°) were negative within the temperature range studied, which indicates that the adsorption process was spontaneous. The negative value of enthalpy (ΔH°) again indicates the exothermic nature of the adsorption process. In addition, SEM-energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses of the IMS surface reveal that the algal biomass on IMS is the main site for Cu(II) binding. This study shows that immobilized microalgae using silica, a synthesized biosorbent, can be used as a cost-effective sorbent for Cu(II) removal from the aqueous phase. |
doi_str_mv | 10.1007/s11356-015-4609-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1768569222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760926913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-83a92ddba6e5c491c68982b459e80165ef4d5465e8c139e7205d00be6ee0cb613</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS1ERbeFD8AFLHEpUgMz_pe4N1gVulKlHqBny0mcxW0Sb-3ksHx6vEpBiAPqaSTP7z3PzCPkNcIHBCg_JkQuVQEoC6FAF_iMrFChKEqh9XOyAi1EgVyIY3KS0h0AA83KF-SYSS25QliR-88-pBB3kw8jDR1dz2ebzXta76kfhlD73v90LR18E4Ptt9bROflxS1NuNPaC3vvRTb45p-5hzk919PNwTu3Y0umHi0No96PNYpqmud2_JEed7ZN79VhPye2Xy-_rq-L65utm_em6aPJQU1Fxq1nb1lY52QiNjap0xWohtasAlXSdaKXItWqQa1cykC1A7ZRz0NQK-Sk5W3x3MTzMLk1m8KlxfW9HF-ZksFSVVJox9hQ0n0xp5Bl99w96F-Y45kUyVVUKOAedKVyofLCUouvMLvrBxr1BMIfQzBKayaGZQ2jmMO-bR-e5Hlz7R_E7pQywBUi5NW5d_Ovr_7i-XUSdDcZuo0_m9hvLBwRAjhUv-S9rhaoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788603309</pqid></control><display><type>article</type><title>Biosorption of Cu(II) by immobilized microalgae using silica: kinetic, equilibrium, and thermodynamic study</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Lee, Hongkyun ; Shim, Eunjung ; Yun, Hyun-Shik ; Park, Young-Tae ; Kim, Dohyeong ; Ji, Min-Kyu ; Kim, Chi-Kyung ; Shin, Won-Sik ; Choi, Jaeyoung</creator><creatorcontrib>Lee, Hongkyun ; Shim, Eunjung ; Yun, Hyun-Shik ; Park, Young-Tae ; Kim, Dohyeong ; Ji, Min-Kyu ; Kim, Chi-Kyung ; Shin, Won-Sik ; Choi, Jaeyoung</creatorcontrib><description>Immobilized microalgae using silica (IMS) from Micractinium reisseri KGE33 was synthesized through a sol-gel reaction. Green algal waste biomass, the residue of M. reisseri KGE33 after oil extraction, was used as the biomaterial. The adsorption of Cu(II) on IMS was tested in batch experiments with varying algal doses, pH, contact times, initial Cu(II) concentrations, and temperatures. Three types of IMSs (IMS 14, 70, and 100) were synthesized according to different algal doses. The removal efficiency of Cu(II) in the aqueous phase was in the following order: IMS 14 (77.0 %) < IMS 70 (83.3 %) < IMS 100 (87.1 %) at pH 5. The point of zero charge (PZC) value of IMS100 was 4.5, and the optimum pH for Cu(II) adsorption was 5. Equilibrium data were described using a Langmuir isotherm model. The Langmuir model maximum Cu(II) adsorption capacity (q ₘ) increased with the algal dose in the following order: IMS 100 (1.710 mg g⁻¹) > IMS 70 (1.548 mg g⁻¹) > IMS 14 (1.282 mg g⁻¹). The pseudo-second-order equation fitted the kinetics data well, and the value of the second-order rate constant increased with increasing algal dose. Gibbs free energies (ΔG°) were negative within the temperature range studied, which indicates that the adsorption process was spontaneous. The negative value of enthalpy (ΔH°) again indicates the exothermic nature of the adsorption process. In addition, SEM-energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses of the IMS surface reveal that the algal biomass on IMS is the main site for Cu(II) binding. This study shows that immobilized microalgae using silica, a synthesized biosorbent, can be used as a cost-effective sorbent for Cu(II) removal from the aqueous phase.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-015-4609-1</identifier><identifier>PMID: 25953610</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Algae ; Aquatic microorganisms ; Aquatic plants ; Aquatic Pollution ; Aqueous solutions ; Atmospheric Protection/Air Quality Control/Air Pollution ; Biomass ; Biomaterials ; Biomedical materials ; biosorbents ; Biosorption ; Cellulose ; Chlorophyta - metabolism ; Copper ; Copper - metabolism ; cost effectiveness ; Deoxyribonucleic acid ; DNA ; Earth and Environmental Science ; Ecological Assessment and Remediation (CLEAR 2014) Conference: Environmental Pollution and Remediation ; Ecotoxicology ; energy-dispersive X-ray analysis ; enthalpy ; Environment ; Environmental Chemistry ; Environmental engineering ; Environmental Health ; equations ; Equilibrium ; Fourier transform infrared spectroscopy ; Fourier transforms ; Gibbs free energy ; heat production ; Heavy metals ; Hydrogen-Ion Concentration ; Kinetics ; Land pollution ; Metals ; Micractinium ; Microalgae ; Microalgae - metabolism ; Nitrates ; oils ; pH effects ; Photoelectron Spectroscopy ; Remediation ; Selected Papers from the 2nd Contaminated Land ; Silica ; Silicon Dioxide - metabolism ; sorption isotherms ; Spectroscopy, Fourier Transform Infrared ; Spectrum analysis ; Temperature ; Thermodynamics ; Waste Water Technology ; Water ; Water Management ; Water Pollutants, Chemical - metabolism ; Water Pollution Control ; X-radiation ; X-ray photoelectron spectroscopy ; X-ray spectroscopy</subject><ispartof>Environmental science and pollution research international, 2016-01, Vol.23 (2), p.1025-1034</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-83a92ddba6e5c491c68982b459e80165ef4d5465e8c139e7205d00be6ee0cb613</citedby><cites>FETCH-LOGICAL-c536t-83a92ddba6e5c491c68982b459e80165ef4d5465e8c139e7205d00be6ee0cb613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-015-4609-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-015-4609-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25953610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hongkyun</creatorcontrib><creatorcontrib>Shim, Eunjung</creatorcontrib><creatorcontrib>Yun, Hyun-Shik</creatorcontrib><creatorcontrib>Park, Young-Tae</creatorcontrib><creatorcontrib>Kim, Dohyeong</creatorcontrib><creatorcontrib>Ji, Min-Kyu</creatorcontrib><creatorcontrib>Kim, Chi-Kyung</creatorcontrib><creatorcontrib>Shin, Won-Sik</creatorcontrib><creatorcontrib>Choi, Jaeyoung</creatorcontrib><title>Biosorption of Cu(II) by immobilized microalgae using silica: kinetic, equilibrium, and thermodynamic study</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Immobilized microalgae using silica (IMS) from Micractinium reisseri KGE33 was synthesized through a sol-gel reaction. Green algal waste biomass, the residue of M. reisseri KGE33 after oil extraction, was used as the biomaterial. The adsorption of Cu(II) on IMS was tested in batch experiments with varying algal doses, pH, contact times, initial Cu(II) concentrations, and temperatures. Three types of IMSs (IMS 14, 70, and 100) were synthesized according to different algal doses. The removal efficiency of Cu(II) in the aqueous phase was in the following order: IMS 14 (77.0 %) < IMS 70 (83.3 %) < IMS 100 (87.1 %) at pH 5. The point of zero charge (PZC) value of IMS100 was 4.5, and the optimum pH for Cu(II) adsorption was 5. Equilibrium data were described using a Langmuir isotherm model. The Langmuir model maximum Cu(II) adsorption capacity (q ₘ) increased with the algal dose in the following order: IMS 100 (1.710 mg g⁻¹) > IMS 70 (1.548 mg g⁻¹) > IMS 14 (1.282 mg g⁻¹). The pseudo-second-order equation fitted the kinetics data well, and the value of the second-order rate constant increased with increasing algal dose. Gibbs free energies (ΔG°) were negative within the temperature range studied, which indicates that the adsorption process was spontaneous. The negative value of enthalpy (ΔH°) again indicates the exothermic nature of the adsorption process. In addition, SEM-energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses of the IMS surface reveal that the algal biomass on IMS is the main site for Cu(II) binding. This study shows that immobilized microalgae using silica, a synthesized biosorbent, can be used as a cost-effective sorbent for Cu(II) removal from the aqueous phase.</description><subject>Adsorption</subject><subject>Algae</subject><subject>Aquatic microorganisms</subject><subject>Aquatic plants</subject><subject>Aquatic Pollution</subject><subject>Aqueous solutions</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Biomass</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>biosorbents</subject><subject>Biosorption</subject><subject>Cellulose</subject><subject>Chlorophyta - metabolism</subject><subject>Copper</subject><subject>Copper - metabolism</subject><subject>cost effectiveness</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Earth and Environmental Science</subject><subject>Ecological Assessment and Remediation (CLEAR 2014) Conference: Environmental Pollution and Remediation</subject><subject>Ecotoxicology</subject><subject>energy-dispersive X-ray analysis</subject><subject>enthalpy</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental engineering</subject><subject>Environmental Health</subject><subject>equations</subject><subject>Equilibrium</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Gibbs free energy</subject><subject>heat production</subject><subject>Heavy metals</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Land pollution</subject><subject>Metals</subject><subject>Micractinium</subject><subject>Microalgae</subject><subject>Microalgae - metabolism</subject><subject>Nitrates</subject><subject>oils</subject><subject>pH effects</subject><subject>Photoelectron Spectroscopy</subject><subject>Remediation</subject><subject>Selected Papers from the 2nd Contaminated Land</subject><subject>Silica</subject><subject>Silicon Dioxide - metabolism</subject><subject>sorption isotherms</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><subject>Thermodynamics</subject><subject>Waste Water Technology</subject><subject>Water</subject><subject>Water Management</subject><subject>Water Pollutants, Chemical - metabolism</subject><subject>Water Pollution Control</subject><subject>X-radiation</subject><subject>X-ray photoelectron spectroscopy</subject><subject>X-ray spectroscopy</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU9v1DAQxS1ERbeFD8AFLHEpUgMz_pe4N1gVulKlHqBny0mcxW0Sb-3ksHx6vEpBiAPqaSTP7z3PzCPkNcIHBCg_JkQuVQEoC6FAF_iMrFChKEqh9XOyAi1EgVyIY3KS0h0AA83KF-SYSS25QliR-88-pBB3kw8jDR1dz2ebzXta76kfhlD73v90LR18E4Ptt9bROflxS1NuNPaC3vvRTb45p-5hzk919PNwTu3Y0umHi0No96PNYpqmud2_JEed7ZN79VhPye2Xy-_rq-L65utm_em6aPJQU1Fxq1nb1lY52QiNjap0xWohtasAlXSdaKXItWqQa1cykC1A7ZRz0NQK-Sk5W3x3MTzMLk1m8KlxfW9HF-ZksFSVVJox9hQ0n0xp5Bl99w96F-Y45kUyVVUKOAedKVyofLCUouvMLvrBxr1BMIfQzBKayaGZQ2jmMO-bR-e5Hlz7R_E7pQywBUi5NW5d_Ovr_7i-XUSdDcZuo0_m9hvLBwRAjhUv-S9rhaoE</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Lee, Hongkyun</creator><creator>Shim, Eunjung</creator><creator>Yun, Hyun-Shik</creator><creator>Park, Young-Tae</creator><creator>Kim, Dohyeong</creator><creator>Ji, Min-Kyu</creator><creator>Kim, Chi-Kyung</creator><creator>Shin, Won-Sik</creator><creator>Choi, Jaeyoung</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7ST</scope><scope>7TG</scope><scope>KL.</scope><scope>SOI</scope></search><sort><creationdate>20160101</creationdate><title>Biosorption of Cu(II) by immobilized microalgae using silica: kinetic, equilibrium, and thermodynamic study</title><author>Lee, Hongkyun ; Shim, Eunjung ; Yun, Hyun-Shik ; Park, Young-Tae ; Kim, Dohyeong ; Ji, Min-Kyu ; Kim, Chi-Kyung ; Shin, Won-Sik ; Choi, Jaeyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-83a92ddba6e5c491c68982b459e80165ef4d5465e8c139e7205d00be6ee0cb613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adsorption</topic><topic>Algae</topic><topic>Aquatic microorganisms</topic><topic>Aquatic plants</topic><topic>Aquatic Pollution</topic><topic>Aqueous solutions</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Biomass</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>biosorbents</topic><topic>Biosorption</topic><topic>Cellulose</topic><topic>Chlorophyta - metabolism</topic><topic>Copper</topic><topic>Copper - metabolism</topic><topic>cost effectiveness</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Earth and Environmental Science</topic><topic>Ecological Assessment and Remediation (CLEAR 2014) Conference: Environmental Pollution and Remediation</topic><topic>Ecotoxicology</topic><topic>energy-dispersive X-ray analysis</topic><topic>enthalpy</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental engineering</topic><topic>Environmental Health</topic><topic>equations</topic><topic>Equilibrium</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Gibbs free energy</topic><topic>heat production</topic><topic>Heavy metals</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Land pollution</topic><topic>Metals</topic><topic>Micractinium</topic><topic>Microalgae</topic><topic>Microalgae - metabolism</topic><topic>Nitrates</topic><topic>oils</topic><topic>pH effects</topic><topic>Photoelectron Spectroscopy</topic><topic>Remediation</topic><topic>Selected Papers from the 2nd Contaminated Land</topic><topic>Silica</topic><topic>Silicon Dioxide - metabolism</topic><topic>sorption isotherms</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><topic>Thermodynamics</topic><topic>Waste Water Technology</topic><topic>Water</topic><topic>Water Management</topic><topic>Water Pollutants, Chemical - metabolism</topic><topic>Water Pollution Control</topic><topic>X-radiation</topic><topic>X-ray photoelectron spectroscopy</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hongkyun</creatorcontrib><creatorcontrib>Shim, Eunjung</creatorcontrib><creatorcontrib>Yun, Hyun-Shik</creatorcontrib><creatorcontrib>Park, Young-Tae</creatorcontrib><creatorcontrib>Kim, Dohyeong</creatorcontrib><creatorcontrib>Ji, Min-Kyu</creatorcontrib><creatorcontrib>Kim, Chi-Kyung</creatorcontrib><creatorcontrib>Shin, Won-Sik</creatorcontrib><creatorcontrib>Choi, Jaeyoung</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Environment Abstracts</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hongkyun</au><au>Shim, Eunjung</au><au>Yun, Hyun-Shik</au><au>Park, Young-Tae</au><au>Kim, Dohyeong</au><au>Ji, Min-Kyu</au><au>Kim, Chi-Kyung</au><au>Shin, Won-Sik</au><au>Choi, Jaeyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biosorption of Cu(II) by immobilized microalgae using silica: kinetic, equilibrium, and thermodynamic study</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>23</volume><issue>2</issue><spage>1025</spage><epage>1034</epage><pages>1025-1034</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Immobilized microalgae using silica (IMS) from Micractinium reisseri KGE33 was synthesized through a sol-gel reaction. Green algal waste biomass, the residue of M. reisseri KGE33 after oil extraction, was used as the biomaterial. The adsorption of Cu(II) on IMS was tested in batch experiments with varying algal doses, pH, contact times, initial Cu(II) concentrations, and temperatures. Three types of IMSs (IMS 14, 70, and 100) were synthesized according to different algal doses. The removal efficiency of Cu(II) in the aqueous phase was in the following order: IMS 14 (77.0 %) < IMS 70 (83.3 %) < IMS 100 (87.1 %) at pH 5. The point of zero charge (PZC) value of IMS100 was 4.5, and the optimum pH for Cu(II) adsorption was 5. Equilibrium data were described using a Langmuir isotherm model. The Langmuir model maximum Cu(II) adsorption capacity (q ₘ) increased with the algal dose in the following order: IMS 100 (1.710 mg g⁻¹) > IMS 70 (1.548 mg g⁻¹) > IMS 14 (1.282 mg g⁻¹). The pseudo-second-order equation fitted the kinetics data well, and the value of the second-order rate constant increased with increasing algal dose. Gibbs free energies (ΔG°) were negative within the temperature range studied, which indicates that the adsorption process was spontaneous. The negative value of enthalpy (ΔH°) again indicates the exothermic nature of the adsorption process. In addition, SEM-energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses of the IMS surface reveal that the algal biomass on IMS is the main site for Cu(II) binding. This study shows that immobilized microalgae using silica, a synthesized biosorbent, can be used as a cost-effective sorbent for Cu(II) removal from the aqueous phase.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25953610</pmid><doi>10.1007/s11356-015-4609-1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2016-01, Vol.23 (2), p.1025-1034 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_1768569222 |
source | MEDLINE; SpringerNature Journals |
subjects | Adsorption Algae Aquatic microorganisms Aquatic plants Aquatic Pollution Aqueous solutions Atmospheric Protection/Air Quality Control/Air Pollution Biomass Biomaterials Biomedical materials biosorbents Biosorption Cellulose Chlorophyta - metabolism Copper Copper - metabolism cost effectiveness Deoxyribonucleic acid DNA Earth and Environmental Science Ecological Assessment and Remediation (CLEAR 2014) Conference: Environmental Pollution and Remediation Ecotoxicology energy-dispersive X-ray analysis enthalpy Environment Environmental Chemistry Environmental engineering Environmental Health equations Equilibrium Fourier transform infrared spectroscopy Fourier transforms Gibbs free energy heat production Heavy metals Hydrogen-Ion Concentration Kinetics Land pollution Metals Micractinium Microalgae Microalgae - metabolism Nitrates oils pH effects Photoelectron Spectroscopy Remediation Selected Papers from the 2nd Contaminated Land Silica Silicon Dioxide - metabolism sorption isotherms Spectroscopy, Fourier Transform Infrared Spectrum analysis Temperature Thermodynamics Waste Water Technology Water Water Management Water Pollutants, Chemical - metabolism Water Pollution Control X-radiation X-ray photoelectron spectroscopy X-ray spectroscopy |
title | Biosorption of Cu(II) by immobilized microalgae using silica: kinetic, equilibrium, and thermodynamic study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T09%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biosorption%20of%20Cu(II)%20by%20immobilized%20microalgae%20using%20silica:%20kinetic,%20equilibrium,%20and%20thermodynamic%20study&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Lee,%20Hongkyun&rft.date=2016-01-01&rft.volume=23&rft.issue=2&rft.spage=1025&rft.epage=1034&rft.pages=1025-1034&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-015-4609-1&rft_dat=%3Cproquest_cross%3E1760926913%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1788603309&rft_id=info:pmid/25953610&rfr_iscdi=true |