Activity-dependent alteration of the morphology of a hippocampal giant synapse

Activity-dependent synaptic plasticity is a fundamental cellular process for learning and memory. While electrophysiological plasticity has been intensively studied, morphological plasticity is less clearly understood. This study investigated the effect of presynaptic stimulation on the morphology o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular neuroscience 2016-03, Vol.71, p.25-33
Hauptverfasser: Maruo, Tomohiko, Mandai, Kenji, Takai, Yoshimi, Mori, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue
container_start_page 25
container_title Molecular and cellular neuroscience
container_volume 71
creator Maruo, Tomohiko
Mandai, Kenji
Takai, Yoshimi
Mori, Masahiro
description Activity-dependent synaptic plasticity is a fundamental cellular process for learning and memory. While electrophysiological plasticity has been intensively studied, morphological plasticity is less clearly understood. This study investigated the effect of presynaptic stimulation on the morphology of a giant mossy fiber-CA3 pyramidal cell synapse, and found that the mossy fiber bouton altered its morphology with an increase in the number of segments. This activity-dependent alteration in morphology required the activation of glutamate receptors and an increase in postsynaptic calcium concentration. In addition, the intercellular retrograde messengers nitric oxide and arachidonic acid were necessary. Simultaneous recordings demonstrated that the morphological complexity of the presynaptic bouton and the amplitude of excitatory postsynaptic currents were well correlated. Thus, a single mossy fiber synapse has the potential for activity-dependent morphological plasticity at the presynaptic bouton, which may be important for learning and memory. [Display omitted] •A mossy fiber bouton changes its morphological complexity by frequent inputs.•The activation of the glutamate receptors is required for the morphological change.•A postsynaptic calcium increase is required for the morphological change.•The retrograde messengers mediate the morphological change.•Presynaptic morphological complexity and synaptic efficacy are well correlated.
doi_str_mv 10.1016/j.mcn.2015.12.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1768567947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044743115300452</els_id><sourcerecordid>1767068085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-b2e80d606f48c88d8466c2139e8cfa861188e4a4ef6fcb30682f3ee61d6472e03</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0Eorw-gA3Kkk2C7Ti2I1ZVxUtCsIG15TqT1lUSB9ut1L_HVQtLxGpGo3PvSAeha4ILggm_WxW9GQqKSVUQWmBcHaEzgusqr0sqjnc7Y7lgJZmg8xBWOBG0Lk_RhHIuheD4DL1NTbQbG7d5AyMMDQwx010Er6N1Q-baLC4h650fl65zi-3uorOlHUdndD_qLltYnTJhO-gxwCU6aXUX4OowL9Dn48PH7Dl_fX96mU1fc8MqGvM5BYkbjnnLpJGykYxzQ0lZgzStlpwQKYFpBi1vzbzEXNK2BOCk4UxQwOUFut33jt59rSFE1dtgoOv0AG4dFBFcVlzUTPwHFekBllVCyR413oXgoVWjt732W0Ww2hlXK5WMq51xRahKPlPm5lC_nvfQ_CZ-FCfgfg9A8rGx4FUwFgYDjfVgomqc_aP-G5nLkO0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767068085</pqid></control><display><type>article</type><title>Activity-dependent alteration of the morphology of a hippocampal giant synapse</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Maruo, Tomohiko ; Mandai, Kenji ; Takai, Yoshimi ; Mori, Masahiro</creator><creatorcontrib>Maruo, Tomohiko ; Mandai, Kenji ; Takai, Yoshimi ; Mori, Masahiro</creatorcontrib><description>Activity-dependent synaptic plasticity is a fundamental cellular process for learning and memory. While electrophysiological plasticity has been intensively studied, morphological plasticity is less clearly understood. This study investigated the effect of presynaptic stimulation on the morphology of a giant mossy fiber-CA3 pyramidal cell synapse, and found that the mossy fiber bouton altered its morphology with an increase in the number of segments. This activity-dependent alteration in morphology required the activation of glutamate receptors and an increase in postsynaptic calcium concentration. In addition, the intercellular retrograde messengers nitric oxide and arachidonic acid were necessary. Simultaneous recordings demonstrated that the morphological complexity of the presynaptic bouton and the amplitude of excitatory postsynaptic currents were well correlated. Thus, a single mossy fiber synapse has the potential for activity-dependent morphological plasticity at the presynaptic bouton, which may be important for learning and memory. [Display omitted] •A mossy fiber bouton changes its morphological complexity by frequent inputs.•The activation of the glutamate receptors is required for the morphological change.•A postsynaptic calcium increase is required for the morphological change.•The retrograde messengers mediate the morphological change.•Presynaptic morphological complexity and synaptic efficacy are well correlated.</description><identifier>ISSN: 1044-7431</identifier><identifier>EISSN: 1095-9327</identifier><identifier>DOI: 10.1016/j.mcn.2015.12.005</identifier><identifier>PMID: 26687760</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Arachidonic Acid - metabolism ; CA3 Region, Hippocampal - cytology ; CA3 Region, Hippocampal - metabolism ; CA3 Region, Hippocampal - physiology ; Calcium - metabolism ; Excitatory Postsynaptic Potentials ; Hippocampus ; Mice ; Mice, Inbred C57BL ; Mossy fiber ; Mossy Fibers, Hippocampal - metabolism ; Mossy Fibers, Hippocampal - physiology ; Neuronal Plasticity ; Nitric Oxide - metabolism ; Pyramidal Cells - cytology ; Pyramidal Cells - metabolism ; Pyramidal Cells - physiology ; Receptors, Glutamate - metabolism ; Synaptic morphology ; Synaptic plasticity</subject><ispartof>Molecular and cellular neuroscience, 2016-03, Vol.71, p.25-33</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-b2e80d606f48c88d8466c2139e8cfa861188e4a4ef6fcb30682f3ee61d6472e03</citedby><cites>FETCH-LOGICAL-c452t-b2e80d606f48c88d8466c2139e8cfa861188e4a4ef6fcb30682f3ee61d6472e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mcn.2015.12.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26687760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maruo, Tomohiko</creatorcontrib><creatorcontrib>Mandai, Kenji</creatorcontrib><creatorcontrib>Takai, Yoshimi</creatorcontrib><creatorcontrib>Mori, Masahiro</creatorcontrib><title>Activity-dependent alteration of the morphology of a hippocampal giant synapse</title><title>Molecular and cellular neuroscience</title><addtitle>Mol Cell Neurosci</addtitle><description>Activity-dependent synaptic plasticity is a fundamental cellular process for learning and memory. While electrophysiological plasticity has been intensively studied, morphological plasticity is less clearly understood. This study investigated the effect of presynaptic stimulation on the morphology of a giant mossy fiber-CA3 pyramidal cell synapse, and found that the mossy fiber bouton altered its morphology with an increase in the number of segments. This activity-dependent alteration in morphology required the activation of glutamate receptors and an increase in postsynaptic calcium concentration. In addition, the intercellular retrograde messengers nitric oxide and arachidonic acid were necessary. Simultaneous recordings demonstrated that the morphological complexity of the presynaptic bouton and the amplitude of excitatory postsynaptic currents were well correlated. Thus, a single mossy fiber synapse has the potential for activity-dependent morphological plasticity at the presynaptic bouton, which may be important for learning and memory. [Display omitted] •A mossy fiber bouton changes its morphological complexity by frequent inputs.•The activation of the glutamate receptors is required for the morphological change.•A postsynaptic calcium increase is required for the morphological change.•The retrograde messengers mediate the morphological change.•Presynaptic morphological complexity and synaptic efficacy are well correlated.</description><subject>Animals</subject><subject>Arachidonic Acid - metabolism</subject><subject>CA3 Region, Hippocampal - cytology</subject><subject>CA3 Region, Hippocampal - metabolism</subject><subject>CA3 Region, Hippocampal - physiology</subject><subject>Calcium - metabolism</subject><subject>Excitatory Postsynaptic Potentials</subject><subject>Hippocampus</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mossy fiber</subject><subject>Mossy Fibers, Hippocampal - metabolism</subject><subject>Mossy Fibers, Hippocampal - physiology</subject><subject>Neuronal Plasticity</subject><subject>Nitric Oxide - metabolism</subject><subject>Pyramidal Cells - cytology</subject><subject>Pyramidal Cells - metabolism</subject><subject>Pyramidal Cells - physiology</subject><subject>Receptors, Glutamate - metabolism</subject><subject>Synaptic morphology</subject><subject>Synaptic plasticity</subject><issn>1044-7431</issn><issn>1095-9327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtOwzAQRS0Eorw-gA3Kkk2C7Ti2I1ZVxUtCsIG15TqT1lUSB9ut1L_HVQtLxGpGo3PvSAeha4ILggm_WxW9GQqKSVUQWmBcHaEzgusqr0sqjnc7Y7lgJZmg8xBWOBG0Lk_RhHIuheD4DL1NTbQbG7d5AyMMDQwx010Er6N1Q-baLC4h650fl65zi-3uorOlHUdndD_qLltYnTJhO-gxwCU6aXUX4OowL9Dn48PH7Dl_fX96mU1fc8MqGvM5BYkbjnnLpJGykYxzQ0lZgzStlpwQKYFpBi1vzbzEXNK2BOCk4UxQwOUFut33jt59rSFE1dtgoOv0AG4dFBFcVlzUTPwHFekBllVCyR413oXgoVWjt732W0Ww2hlXK5WMq51xRahKPlPm5lC_nvfQ_CZ-FCfgfg9A8rGx4FUwFgYDjfVgomqc_aP-G5nLkO0</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Maruo, Tomohiko</creator><creator>Mandai, Kenji</creator><creator>Takai, Yoshimi</creator><creator>Mori, Masahiro</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>201603</creationdate><title>Activity-dependent alteration of the morphology of a hippocampal giant synapse</title><author>Maruo, Tomohiko ; Mandai, Kenji ; Takai, Yoshimi ; Mori, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-b2e80d606f48c88d8466c2139e8cfa861188e4a4ef6fcb30682f3ee61d6472e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Arachidonic Acid - metabolism</topic><topic>CA3 Region, Hippocampal - cytology</topic><topic>CA3 Region, Hippocampal - metabolism</topic><topic>CA3 Region, Hippocampal - physiology</topic><topic>Calcium - metabolism</topic><topic>Excitatory Postsynaptic Potentials</topic><topic>Hippocampus</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mossy fiber</topic><topic>Mossy Fibers, Hippocampal - metabolism</topic><topic>Mossy Fibers, Hippocampal - physiology</topic><topic>Neuronal Plasticity</topic><topic>Nitric Oxide - metabolism</topic><topic>Pyramidal Cells - cytology</topic><topic>Pyramidal Cells - metabolism</topic><topic>Pyramidal Cells - physiology</topic><topic>Receptors, Glutamate - metabolism</topic><topic>Synaptic morphology</topic><topic>Synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maruo, Tomohiko</creatorcontrib><creatorcontrib>Mandai, Kenji</creatorcontrib><creatorcontrib>Takai, Yoshimi</creatorcontrib><creatorcontrib>Mori, Masahiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Molecular and cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maruo, Tomohiko</au><au>Mandai, Kenji</au><au>Takai, Yoshimi</au><au>Mori, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activity-dependent alteration of the morphology of a hippocampal giant synapse</atitle><jtitle>Molecular and cellular neuroscience</jtitle><addtitle>Mol Cell Neurosci</addtitle><date>2016-03</date><risdate>2016</risdate><volume>71</volume><spage>25</spage><epage>33</epage><pages>25-33</pages><issn>1044-7431</issn><eissn>1095-9327</eissn><abstract>Activity-dependent synaptic plasticity is a fundamental cellular process for learning and memory. While electrophysiological plasticity has been intensively studied, morphological plasticity is less clearly understood. This study investigated the effect of presynaptic stimulation on the morphology of a giant mossy fiber-CA3 pyramidal cell synapse, and found that the mossy fiber bouton altered its morphology with an increase in the number of segments. This activity-dependent alteration in morphology required the activation of glutamate receptors and an increase in postsynaptic calcium concentration. In addition, the intercellular retrograde messengers nitric oxide and arachidonic acid were necessary. Simultaneous recordings demonstrated that the morphological complexity of the presynaptic bouton and the amplitude of excitatory postsynaptic currents were well correlated. Thus, a single mossy fiber synapse has the potential for activity-dependent morphological plasticity at the presynaptic bouton, which may be important for learning and memory. [Display omitted] •A mossy fiber bouton changes its morphological complexity by frequent inputs.•The activation of the glutamate receptors is required for the morphological change.•A postsynaptic calcium increase is required for the morphological change.•The retrograde messengers mediate the morphological change.•Presynaptic morphological complexity and synaptic efficacy are well correlated.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26687760</pmid><doi>10.1016/j.mcn.2015.12.005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1044-7431
ispartof Molecular and cellular neuroscience, 2016-03, Vol.71, p.25-33
issn 1044-7431
1095-9327
language eng
recordid cdi_proquest_miscellaneous_1768567947
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Arachidonic Acid - metabolism
CA3 Region, Hippocampal - cytology
CA3 Region, Hippocampal - metabolism
CA3 Region, Hippocampal - physiology
Calcium - metabolism
Excitatory Postsynaptic Potentials
Hippocampus
Mice
Mice, Inbred C57BL
Mossy fiber
Mossy Fibers, Hippocampal - metabolism
Mossy Fibers, Hippocampal - physiology
Neuronal Plasticity
Nitric Oxide - metabolism
Pyramidal Cells - cytology
Pyramidal Cells - metabolism
Pyramidal Cells - physiology
Receptors, Glutamate - metabolism
Synaptic morphology
Synaptic plasticity
title Activity-dependent alteration of the morphology of a hippocampal giant synapse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activity-dependent%20alteration%20of%20the%20morphology%20of%20a%20hippocampal%20giant%20synapse&rft.jtitle=Molecular%20and%20cellular%20neuroscience&rft.au=Maruo,%20Tomohiko&rft.date=2016-03&rft.volume=71&rft.spage=25&rft.epage=33&rft.pages=25-33&rft.issn=1044-7431&rft.eissn=1095-9327&rft_id=info:doi/10.1016/j.mcn.2015.12.005&rft_dat=%3Cproquest_cross%3E1767068085%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767068085&rft_id=info:pmid/26687760&rft_els_id=S1044743115300452&rfr_iscdi=true