Activity-dependent alteration of the morphology of a hippocampal giant synapse
Activity-dependent synaptic plasticity is a fundamental cellular process for learning and memory. While electrophysiological plasticity has been intensively studied, morphological plasticity is less clearly understood. This study investigated the effect of presynaptic stimulation on the morphology o...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular neuroscience 2016-03, Vol.71, p.25-33 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | |
container_start_page | 25 |
container_title | Molecular and cellular neuroscience |
container_volume | 71 |
creator | Maruo, Tomohiko Mandai, Kenji Takai, Yoshimi Mori, Masahiro |
description | Activity-dependent synaptic plasticity is a fundamental cellular process for learning and memory. While electrophysiological plasticity has been intensively studied, morphological plasticity is less clearly understood. This study investigated the effect of presynaptic stimulation on the morphology of a giant mossy fiber-CA3 pyramidal cell synapse, and found that the mossy fiber bouton altered its morphology with an increase in the number of segments. This activity-dependent alteration in morphology required the activation of glutamate receptors and an increase in postsynaptic calcium concentration. In addition, the intercellular retrograde messengers nitric oxide and arachidonic acid were necessary. Simultaneous recordings demonstrated that the morphological complexity of the presynaptic bouton and the amplitude of excitatory postsynaptic currents were well correlated. Thus, a single mossy fiber synapse has the potential for activity-dependent morphological plasticity at the presynaptic bouton, which may be important for learning and memory.
[Display omitted]
•A mossy fiber bouton changes its morphological complexity by frequent inputs.•The activation of the glutamate receptors is required for the morphological change.•A postsynaptic calcium increase is required for the morphological change.•The retrograde messengers mediate the morphological change.•Presynaptic morphological complexity and synaptic efficacy are well correlated. |
doi_str_mv | 10.1016/j.mcn.2015.12.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1768567947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044743115300452</els_id><sourcerecordid>1767068085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-b2e80d606f48c88d8466c2139e8cfa861188e4a4ef6fcb30682f3ee61d6472e03</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0Eorw-gA3Kkk2C7Ti2I1ZVxUtCsIG15TqT1lUSB9ut1L_HVQtLxGpGo3PvSAeha4ILggm_WxW9GQqKSVUQWmBcHaEzgusqr0sqjnc7Y7lgJZmg8xBWOBG0Lk_RhHIuheD4DL1NTbQbG7d5AyMMDQwx010Er6N1Q-baLC4h650fl65zi-3uorOlHUdndD_qLltYnTJhO-gxwCU6aXUX4OowL9Dn48PH7Dl_fX96mU1fc8MqGvM5BYkbjnnLpJGykYxzQ0lZgzStlpwQKYFpBi1vzbzEXNK2BOCk4UxQwOUFut33jt59rSFE1dtgoOv0AG4dFBFcVlzUTPwHFekBllVCyR413oXgoVWjt732W0Ww2hlXK5WMq51xRahKPlPm5lC_nvfQ_CZ-FCfgfg9A8rGx4FUwFgYDjfVgomqc_aP-G5nLkO0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767068085</pqid></control><display><type>article</type><title>Activity-dependent alteration of the morphology of a hippocampal giant synapse</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Maruo, Tomohiko ; Mandai, Kenji ; Takai, Yoshimi ; Mori, Masahiro</creator><creatorcontrib>Maruo, Tomohiko ; Mandai, Kenji ; Takai, Yoshimi ; Mori, Masahiro</creatorcontrib><description>Activity-dependent synaptic plasticity is a fundamental cellular process for learning and memory. While electrophysiological plasticity has been intensively studied, morphological plasticity is less clearly understood. This study investigated the effect of presynaptic stimulation on the morphology of a giant mossy fiber-CA3 pyramidal cell synapse, and found that the mossy fiber bouton altered its morphology with an increase in the number of segments. This activity-dependent alteration in morphology required the activation of glutamate receptors and an increase in postsynaptic calcium concentration. In addition, the intercellular retrograde messengers nitric oxide and arachidonic acid were necessary. Simultaneous recordings demonstrated that the morphological complexity of the presynaptic bouton and the amplitude of excitatory postsynaptic currents were well correlated. Thus, a single mossy fiber synapse has the potential for activity-dependent morphological plasticity at the presynaptic bouton, which may be important for learning and memory.
[Display omitted]
•A mossy fiber bouton changes its morphological complexity by frequent inputs.•The activation of the glutamate receptors is required for the morphological change.•A postsynaptic calcium increase is required for the morphological change.•The retrograde messengers mediate the morphological change.•Presynaptic morphological complexity and synaptic efficacy are well correlated.</description><identifier>ISSN: 1044-7431</identifier><identifier>EISSN: 1095-9327</identifier><identifier>DOI: 10.1016/j.mcn.2015.12.005</identifier><identifier>PMID: 26687760</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Arachidonic Acid - metabolism ; CA3 Region, Hippocampal - cytology ; CA3 Region, Hippocampal - metabolism ; CA3 Region, Hippocampal - physiology ; Calcium - metabolism ; Excitatory Postsynaptic Potentials ; Hippocampus ; Mice ; Mice, Inbred C57BL ; Mossy fiber ; Mossy Fibers, Hippocampal - metabolism ; Mossy Fibers, Hippocampal - physiology ; Neuronal Plasticity ; Nitric Oxide - metabolism ; Pyramidal Cells - cytology ; Pyramidal Cells - metabolism ; Pyramidal Cells - physiology ; Receptors, Glutamate - metabolism ; Synaptic morphology ; Synaptic plasticity</subject><ispartof>Molecular and cellular neuroscience, 2016-03, Vol.71, p.25-33</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-b2e80d606f48c88d8466c2139e8cfa861188e4a4ef6fcb30682f3ee61d6472e03</citedby><cites>FETCH-LOGICAL-c452t-b2e80d606f48c88d8466c2139e8cfa861188e4a4ef6fcb30682f3ee61d6472e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mcn.2015.12.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26687760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maruo, Tomohiko</creatorcontrib><creatorcontrib>Mandai, Kenji</creatorcontrib><creatorcontrib>Takai, Yoshimi</creatorcontrib><creatorcontrib>Mori, Masahiro</creatorcontrib><title>Activity-dependent alteration of the morphology of a hippocampal giant synapse</title><title>Molecular and cellular neuroscience</title><addtitle>Mol Cell Neurosci</addtitle><description>Activity-dependent synaptic plasticity is a fundamental cellular process for learning and memory. While electrophysiological plasticity has been intensively studied, morphological plasticity is less clearly understood. This study investigated the effect of presynaptic stimulation on the morphology of a giant mossy fiber-CA3 pyramidal cell synapse, and found that the mossy fiber bouton altered its morphology with an increase in the number of segments. This activity-dependent alteration in morphology required the activation of glutamate receptors and an increase in postsynaptic calcium concentration. In addition, the intercellular retrograde messengers nitric oxide and arachidonic acid were necessary. Simultaneous recordings demonstrated that the morphological complexity of the presynaptic bouton and the amplitude of excitatory postsynaptic currents were well correlated. Thus, a single mossy fiber synapse has the potential for activity-dependent morphological plasticity at the presynaptic bouton, which may be important for learning and memory.
[Display omitted]
•A mossy fiber bouton changes its morphological complexity by frequent inputs.•The activation of the glutamate receptors is required for the morphological change.•A postsynaptic calcium increase is required for the morphological change.•The retrograde messengers mediate the morphological change.•Presynaptic morphological complexity and synaptic efficacy are well correlated.</description><subject>Animals</subject><subject>Arachidonic Acid - metabolism</subject><subject>CA3 Region, Hippocampal - cytology</subject><subject>CA3 Region, Hippocampal - metabolism</subject><subject>CA3 Region, Hippocampal - physiology</subject><subject>Calcium - metabolism</subject><subject>Excitatory Postsynaptic Potentials</subject><subject>Hippocampus</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mossy fiber</subject><subject>Mossy Fibers, Hippocampal - metabolism</subject><subject>Mossy Fibers, Hippocampal - physiology</subject><subject>Neuronal Plasticity</subject><subject>Nitric Oxide - metabolism</subject><subject>Pyramidal Cells - cytology</subject><subject>Pyramidal Cells - metabolism</subject><subject>Pyramidal Cells - physiology</subject><subject>Receptors, Glutamate - metabolism</subject><subject>Synaptic morphology</subject><subject>Synaptic plasticity</subject><issn>1044-7431</issn><issn>1095-9327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtOwzAQRS0Eorw-gA3Kkk2C7Ti2I1ZVxUtCsIG15TqT1lUSB9ut1L_HVQtLxGpGo3PvSAeha4ILggm_WxW9GQqKSVUQWmBcHaEzgusqr0sqjnc7Y7lgJZmg8xBWOBG0Lk_RhHIuheD4DL1NTbQbG7d5AyMMDQwx010Er6N1Q-baLC4h650fl65zi-3uorOlHUdndD_qLltYnTJhO-gxwCU6aXUX4OowL9Dn48PH7Dl_fX96mU1fc8MqGvM5BYkbjnnLpJGykYxzQ0lZgzStlpwQKYFpBi1vzbzEXNK2BOCk4UxQwOUFut33jt59rSFE1dtgoOv0AG4dFBFcVlzUTPwHFekBllVCyR413oXgoVWjt732W0Ww2hlXK5WMq51xRahKPlPm5lC_nvfQ_CZ-FCfgfg9A8rGx4FUwFgYDjfVgomqc_aP-G5nLkO0</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Maruo, Tomohiko</creator><creator>Mandai, Kenji</creator><creator>Takai, Yoshimi</creator><creator>Mori, Masahiro</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>201603</creationdate><title>Activity-dependent alteration of the morphology of a hippocampal giant synapse</title><author>Maruo, Tomohiko ; Mandai, Kenji ; Takai, Yoshimi ; Mori, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-b2e80d606f48c88d8466c2139e8cfa861188e4a4ef6fcb30682f3ee61d6472e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Arachidonic Acid - metabolism</topic><topic>CA3 Region, Hippocampal - cytology</topic><topic>CA3 Region, Hippocampal - metabolism</topic><topic>CA3 Region, Hippocampal - physiology</topic><topic>Calcium - metabolism</topic><topic>Excitatory Postsynaptic Potentials</topic><topic>Hippocampus</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mossy fiber</topic><topic>Mossy Fibers, Hippocampal - metabolism</topic><topic>Mossy Fibers, Hippocampal - physiology</topic><topic>Neuronal Plasticity</topic><topic>Nitric Oxide - metabolism</topic><topic>Pyramidal Cells - cytology</topic><topic>Pyramidal Cells - metabolism</topic><topic>Pyramidal Cells - physiology</topic><topic>Receptors, Glutamate - metabolism</topic><topic>Synaptic morphology</topic><topic>Synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maruo, Tomohiko</creatorcontrib><creatorcontrib>Mandai, Kenji</creatorcontrib><creatorcontrib>Takai, Yoshimi</creatorcontrib><creatorcontrib>Mori, Masahiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Molecular and cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maruo, Tomohiko</au><au>Mandai, Kenji</au><au>Takai, Yoshimi</au><au>Mori, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activity-dependent alteration of the morphology of a hippocampal giant synapse</atitle><jtitle>Molecular and cellular neuroscience</jtitle><addtitle>Mol Cell Neurosci</addtitle><date>2016-03</date><risdate>2016</risdate><volume>71</volume><spage>25</spage><epage>33</epage><pages>25-33</pages><issn>1044-7431</issn><eissn>1095-9327</eissn><abstract>Activity-dependent synaptic plasticity is a fundamental cellular process for learning and memory. While electrophysiological plasticity has been intensively studied, morphological plasticity is less clearly understood. This study investigated the effect of presynaptic stimulation on the morphology of a giant mossy fiber-CA3 pyramidal cell synapse, and found that the mossy fiber bouton altered its morphology with an increase in the number of segments. This activity-dependent alteration in morphology required the activation of glutamate receptors and an increase in postsynaptic calcium concentration. In addition, the intercellular retrograde messengers nitric oxide and arachidonic acid were necessary. Simultaneous recordings demonstrated that the morphological complexity of the presynaptic bouton and the amplitude of excitatory postsynaptic currents were well correlated. Thus, a single mossy fiber synapse has the potential for activity-dependent morphological plasticity at the presynaptic bouton, which may be important for learning and memory.
[Display omitted]
•A mossy fiber bouton changes its morphological complexity by frequent inputs.•The activation of the glutamate receptors is required for the morphological change.•A postsynaptic calcium increase is required for the morphological change.•The retrograde messengers mediate the morphological change.•Presynaptic morphological complexity and synaptic efficacy are well correlated.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26687760</pmid><doi>10.1016/j.mcn.2015.12.005</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-7431 |
ispartof | Molecular and cellular neuroscience, 2016-03, Vol.71, p.25-33 |
issn | 1044-7431 1095-9327 |
language | eng |
recordid | cdi_proquest_miscellaneous_1768567947 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Arachidonic Acid - metabolism CA3 Region, Hippocampal - cytology CA3 Region, Hippocampal - metabolism CA3 Region, Hippocampal - physiology Calcium - metabolism Excitatory Postsynaptic Potentials Hippocampus Mice Mice, Inbred C57BL Mossy fiber Mossy Fibers, Hippocampal - metabolism Mossy Fibers, Hippocampal - physiology Neuronal Plasticity Nitric Oxide - metabolism Pyramidal Cells - cytology Pyramidal Cells - metabolism Pyramidal Cells - physiology Receptors, Glutamate - metabolism Synaptic morphology Synaptic plasticity |
title | Activity-dependent alteration of the morphology of a hippocampal giant synapse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activity-dependent%20alteration%20of%20the%20morphology%20of%20a%20hippocampal%20giant%20synapse&rft.jtitle=Molecular%20and%20cellular%20neuroscience&rft.au=Maruo,%20Tomohiko&rft.date=2016-03&rft.volume=71&rft.spage=25&rft.epage=33&rft.pages=25-33&rft.issn=1044-7431&rft.eissn=1095-9327&rft_id=info:doi/10.1016/j.mcn.2015.12.005&rft_dat=%3Cproquest_cross%3E1767068085%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767068085&rft_id=info:pmid/26687760&rft_els_id=S1044743115300452&rfr_iscdi=true |