Concurrent detection and classification of targets with multistage signal-processing algorithms
Concurrent detection and classification (CDAC) of targets stands as the goal in littoral mine-hunting missions. CDAC systems commonly apply model-based algorithms that include a priori known features of the target inside the detection algorithm. If the models are accurate, then this approach signifi...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2004-05, Vol.115 (5), p.2616-2616 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2616 |
---|---|
container_issue | 5 |
container_start_page | 2616 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 115 |
creator | Montanari, M Edwards, J R Schmidt, H |
description | Concurrent detection and classification (CDAC) of targets stands as the goal in littoral mine-hunting missions. CDAC systems commonly apply model-based algorithms that include a priori known features of the target inside the detection algorithm. If the models are accurate, then this approach significantly reduces the false-alarm rate inherent in detection-only methods. When the possible targets are unknown, as may be the case in tactical situations, then these model-based methods not only fail to reduce the false-alarm rate, but may also reduce the probability of detection. Simultaneous optimization of detection and classification presents a challenge due to competing criteria; detection seeks to integrate signals to improve signal-to-noise ratio, while classification seeks to preserve small features of distinction within the signals. In this work, a method for robust CDAC is demonstrated that exploits the capabilities of autonomous underwater vehicles (AUVs) and multistage signal-processing algorithms to systematically investigate targets of interest in a single mission. The deformable geometry of the AUV-borne sonar network is exploited to provide favorable views of targets to achieve multiple objectives in series, and on-board computational facilities allow the implementation of multiple signal-processing regimes. |
doi_str_mv | 10.1121/1.4784801 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17682284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17682284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c984-d4f852ea265cfde5b11afca329cdc22d9859807eb6d2edfb57133f180d9c96d73</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI4u_AdZiS465qZJmyxl8AUDbmYfMnnUSNuMSYr4763OrF1dzuU7h8NB6BrICoDCPaxYK5ggcIIWwCmpBKfsFC0IIVAx2TTn6CLnj1lyUcsFUus4miklNxZsXXGmhDhiPVpsep1z8MHov1f0uOjUuZLxVyjveJj6EnLRncM5dKPuq32Kxs2WscO672KaqSFfojOv--yujneJtk-P2_VLtXl7fl0_bCojBass83NPp2nDjbeO7wC0N7qm0lhDqZWCS0Fat2ssddbveAt17UEQK41sbFsv0c0hdi7xOblc1BCycX2vRxenrKBtBKWCzeDt_yCnwAirKZnRuwNqUsw5Oa_2KQw6fSsg6ndsBeo4dv0DW5lzRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1521404320</pqid></control><display><type>article</type><title>Concurrent detection and classification of targets with multistage signal-processing algorithms</title><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Montanari, M ; Edwards, J R ; Schmidt, H</creator><creatorcontrib>Montanari, M ; Edwards, J R ; Schmidt, H</creatorcontrib><description>Concurrent detection and classification (CDAC) of targets stands as the goal in littoral mine-hunting missions. CDAC systems commonly apply model-based algorithms that include a priori known features of the target inside the detection algorithm. If the models are accurate, then this approach significantly reduces the false-alarm rate inherent in detection-only methods. When the possible targets are unknown, as may be the case in tactical situations, then these model-based methods not only fail to reduce the false-alarm rate, but may also reduce the probability of detection. Simultaneous optimization of detection and classification presents a challenge due to competing criteria; detection seeks to integrate signals to improve signal-to-noise ratio, while classification seeks to preserve small features of distinction within the signals. In this work, a method for robust CDAC is demonstrated that exploits the capabilities of autonomous underwater vehicles (AUVs) and multistage signal-processing algorithms to systematically investigate targets of interest in a single mission. The deformable geometry of the AUV-borne sonar network is exploited to provide favorable views of targets to achieve multiple objectives in series, and on-board computational facilities allow the implementation of multiple signal-processing regimes.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4784801</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2004-05, Vol.115 (5), p.2616-2616</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Montanari, M</creatorcontrib><creatorcontrib>Edwards, J R</creatorcontrib><creatorcontrib>Schmidt, H</creatorcontrib><title>Concurrent detection and classification of targets with multistage signal-processing algorithms</title><title>The Journal of the Acoustical Society of America</title><description>Concurrent detection and classification (CDAC) of targets stands as the goal in littoral mine-hunting missions. CDAC systems commonly apply model-based algorithms that include a priori known features of the target inside the detection algorithm. If the models are accurate, then this approach significantly reduces the false-alarm rate inherent in detection-only methods. When the possible targets are unknown, as may be the case in tactical situations, then these model-based methods not only fail to reduce the false-alarm rate, but may also reduce the probability of detection. Simultaneous optimization of detection and classification presents a challenge due to competing criteria; detection seeks to integrate signals to improve signal-to-noise ratio, while classification seeks to preserve small features of distinction within the signals. In this work, a method for robust CDAC is demonstrated that exploits the capabilities of autonomous underwater vehicles (AUVs) and multistage signal-processing algorithms to systematically investigate targets of interest in a single mission. The deformable geometry of the AUV-borne sonar network is exploited to provide favorable views of targets to achieve multiple objectives in series, and on-board computational facilities allow the implementation of multiple signal-processing regimes.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI4u_AdZiS465qZJmyxl8AUDbmYfMnnUSNuMSYr4763OrF1dzuU7h8NB6BrICoDCPaxYK5ggcIIWwCmpBKfsFC0IIVAx2TTn6CLnj1lyUcsFUus4miklNxZsXXGmhDhiPVpsep1z8MHov1f0uOjUuZLxVyjveJj6EnLRncM5dKPuq32Kxs2WscO672KaqSFfojOv--yujneJtk-P2_VLtXl7fl0_bCojBass83NPp2nDjbeO7wC0N7qm0lhDqZWCS0Fat2ssddbveAt17UEQK41sbFsv0c0hdi7xOblc1BCycX2vRxenrKBtBKWCzeDt_yCnwAirKZnRuwNqUsw5Oa_2KQw6fSsg6ndsBeo4dv0DW5lzRw</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Montanari, M</creator><creator>Edwards, J R</creator><creator>Schmidt, H</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20040501</creationdate><title>Concurrent detection and classification of targets with multistage signal-processing algorithms</title><author>Montanari, M ; Edwards, J R ; Schmidt, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c984-d4f852ea265cfde5b11afca329cdc22d9859807eb6d2edfb57133f180d9c96d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montanari, M</creatorcontrib><creatorcontrib>Edwards, J R</creatorcontrib><creatorcontrib>Schmidt, H</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montanari, M</au><au>Edwards, J R</au><au>Schmidt, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concurrent detection and classification of targets with multistage signal-processing algorithms</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2004-05-01</date><risdate>2004</risdate><volume>115</volume><issue>5</issue><spage>2616</spage><epage>2616</epage><pages>2616-2616</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>Concurrent detection and classification (CDAC) of targets stands as the goal in littoral mine-hunting missions. CDAC systems commonly apply model-based algorithms that include a priori known features of the target inside the detection algorithm. If the models are accurate, then this approach significantly reduces the false-alarm rate inherent in detection-only methods. When the possible targets are unknown, as may be the case in tactical situations, then these model-based methods not only fail to reduce the false-alarm rate, but may also reduce the probability of detection. Simultaneous optimization of detection and classification presents a challenge due to competing criteria; detection seeks to integrate signals to improve signal-to-noise ratio, while classification seeks to preserve small features of distinction within the signals. In this work, a method for robust CDAC is demonstrated that exploits the capabilities of autonomous underwater vehicles (AUVs) and multistage signal-processing algorithms to systematically investigate targets of interest in a single mission. The deformable geometry of the AUV-borne sonar network is exploited to provide favorable views of targets to achieve multiple objectives in series, and on-board computational facilities allow the implementation of multiple signal-processing regimes.</abstract><doi>10.1121/1.4784801</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2004-05, Vol.115 (5), p.2616-2616 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_17682284 |
source | AIP Journals Complete; AIP Acoustical Society of America |
title | Concurrent detection and classification of targets with multistage signal-processing algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concurrent%20detection%20and%20classification%20of%20targets%20with%20multistage%20signal-processing%20algorithms&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Montanari,%20M&rft.date=2004-05-01&rft.volume=115&rft.issue=5&rft.spage=2616&rft.epage=2616&rft.pages=2616-2616&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.4784801&rft_dat=%3Cproquest_cross%3E17682284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1521404320&rft_id=info:pmid/&rfr_iscdi=true |