Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation
Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemporal limitations of atomistic modeli...
Gespeichert in:
Veröffentlicht in: | ACS nano 2016-02, Vol.10 (2), p.1820-1828 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1828 |
---|---|
container_issue | 2 |
container_start_page | 1820 |
container_title | ACS nano |
container_volume | 10 |
creator | Wei, Xiaoding Meng, Zhaoxu Ruiz, Luis Xia, Wenjie Lee, Changgu Kysar, Jeffrey W Hone, James C Keten, Sinan Espinosa, Horacio D |
description | Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemporal limitations of atomistic modeling. In this study, we combine nanomechanical experiments with coarse-grained molecular dynamics (CG-MD) simulations to elucidate the mechanisms of deformation and failure of MLG sheets. Elastic properties of graphene sheets with one to three layers are measured using film deflection tests. A nonlinear behavior in the force vs deflection curves for MLGs is observed in both experiments and simulations: during loading/unloading cycles, MLGs dissipate energy through a “recoverable slippage” mechanism. The CG-MD simulations further reveal an atomic level interlayer slippage process and suggest that the dissipated energy scales with film perimeter. Moreover, our study demonstrates that the finite shear strength between individual layers could explain the experimentally measured size-dependent strength with thickness scaling in MLG sheets. |
doi_str_mv | 10.1021/acsnano.5b04939 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1767912506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1767912506</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-4d6d2ff3359c08de07b1beb54259ba9b91ba11df132cb6a29edae3543175e87d3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMobk7P3iRHQbolzdI2R5lzChNhKngQykv7umV0aU1aYf-91c3dPL3v8Ps-eD9CLjkbchbyEWTegq2GUrOxEuqI9LkSUcCS6P34kCXvkTPv14zJOImjU9ILozgRSSj75GOBWfWFDnSJ9KU0dQ1LpE-YrcAav6HG0qe2bEwJW3R05qBeoUU6R8g9bSq6wBqh-W1PLbrllt4Z700NjansOTkpoPR4sb8D8nY_fZ08BPPn2ePkdh6AUKoJxnmUh0UhhFQZS3JkseYatRyHUmlQWnENnOcFF2GmIwgV5oBCjgWPJSZxLgbkerdbu-qzRd-kG-MzLEuwWLU-5XEUKx5KFnXoaIdmrvLeYZHWzmzAbVPO0h-l6V5pulfaNa72463eYH7g_xx2wM0O6Jrpumqd7X79d-4bSPaDVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767912506</pqid></control><display><type>article</type><title>Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation</title><source>ACS Publications</source><creator>Wei, Xiaoding ; Meng, Zhaoxu ; Ruiz, Luis ; Xia, Wenjie ; Lee, Changgu ; Kysar, Jeffrey W ; Hone, James C ; Keten, Sinan ; Espinosa, Horacio D</creator><creatorcontrib>Wei, Xiaoding ; Meng, Zhaoxu ; Ruiz, Luis ; Xia, Wenjie ; Lee, Changgu ; Kysar, Jeffrey W ; Hone, James C ; Keten, Sinan ; Espinosa, Horacio D</creatorcontrib><description>Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemporal limitations of atomistic modeling. In this study, we combine nanomechanical experiments with coarse-grained molecular dynamics (CG-MD) simulations to elucidate the mechanisms of deformation and failure of MLG sheets. Elastic properties of graphene sheets with one to three layers are measured using film deflection tests. A nonlinear behavior in the force vs deflection curves for MLGs is observed in both experiments and simulations: during loading/unloading cycles, MLGs dissipate energy through a “recoverable slippage” mechanism. The CG-MD simulations further reveal an atomic level interlayer slippage process and suggest that the dissipated energy scales with film perimeter. Moreover, our study demonstrates that the finite shear strength between individual layers could explain the experimentally measured size-dependent strength with thickness scaling in MLG sheets.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b04939</identifier><identifier>PMID: 26783825</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2016-02, Vol.10 (2), p.1820-1828</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-4d6d2ff3359c08de07b1beb54259ba9b91ba11df132cb6a29edae3543175e87d3</citedby><cites>FETCH-LOGICAL-a399t-4d6d2ff3359c08de07b1beb54259ba9b91ba11df132cb6a29edae3543175e87d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.5b04939$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.5b04939$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26783825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Xiaoding</creatorcontrib><creatorcontrib>Meng, Zhaoxu</creatorcontrib><creatorcontrib>Ruiz, Luis</creatorcontrib><creatorcontrib>Xia, Wenjie</creatorcontrib><creatorcontrib>Lee, Changgu</creatorcontrib><creatorcontrib>Kysar, Jeffrey W</creatorcontrib><creatorcontrib>Hone, James C</creatorcontrib><creatorcontrib>Keten, Sinan</creatorcontrib><creatorcontrib>Espinosa, Horacio D</creatorcontrib><title>Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemporal limitations of atomistic modeling. In this study, we combine nanomechanical experiments with coarse-grained molecular dynamics (CG-MD) simulations to elucidate the mechanisms of deformation and failure of MLG sheets. Elastic properties of graphene sheets with one to three layers are measured using film deflection tests. A nonlinear behavior in the force vs deflection curves for MLGs is observed in both experiments and simulations: during loading/unloading cycles, MLGs dissipate energy through a “recoverable slippage” mechanism. The CG-MD simulations further reveal an atomic level interlayer slippage process and suggest that the dissipated energy scales with film perimeter. Moreover, our study demonstrates that the finite shear strength between individual layers could explain the experimentally measured size-dependent strength with thickness scaling in MLG sheets.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMobk7P3iRHQbolzdI2R5lzChNhKngQykv7umV0aU1aYf-91c3dPL3v8Ps-eD9CLjkbchbyEWTegq2GUrOxEuqI9LkSUcCS6P34kCXvkTPv14zJOImjU9ILozgRSSj75GOBWfWFDnSJ9KU0dQ1LpE-YrcAav6HG0qe2bEwJW3R05qBeoUU6R8g9bSq6wBqh-W1PLbrllt4Z700NjansOTkpoPR4sb8D8nY_fZ08BPPn2ePkdh6AUKoJxnmUh0UhhFQZS3JkseYatRyHUmlQWnENnOcFF2GmIwgV5oBCjgWPJSZxLgbkerdbu-qzRd-kG-MzLEuwWLU-5XEUKx5KFnXoaIdmrvLeYZHWzmzAbVPO0h-l6V5pulfaNa72463eYH7g_xx2wM0O6Jrpumqd7X79d-4bSPaDVg</recordid><startdate>20160223</startdate><enddate>20160223</enddate><creator>Wei, Xiaoding</creator><creator>Meng, Zhaoxu</creator><creator>Ruiz, Luis</creator><creator>Xia, Wenjie</creator><creator>Lee, Changgu</creator><creator>Kysar, Jeffrey W</creator><creator>Hone, James C</creator><creator>Keten, Sinan</creator><creator>Espinosa, Horacio D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160223</creationdate><title>Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation</title><author>Wei, Xiaoding ; Meng, Zhaoxu ; Ruiz, Luis ; Xia, Wenjie ; Lee, Changgu ; Kysar, Jeffrey W ; Hone, James C ; Keten, Sinan ; Espinosa, Horacio D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-4d6d2ff3359c08de07b1beb54259ba9b91ba11df132cb6a29edae3543175e87d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xiaoding</creatorcontrib><creatorcontrib>Meng, Zhaoxu</creatorcontrib><creatorcontrib>Ruiz, Luis</creatorcontrib><creatorcontrib>Xia, Wenjie</creatorcontrib><creatorcontrib>Lee, Changgu</creatorcontrib><creatorcontrib>Kysar, Jeffrey W</creatorcontrib><creatorcontrib>Hone, James C</creatorcontrib><creatorcontrib>Keten, Sinan</creatorcontrib><creatorcontrib>Espinosa, Horacio D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xiaoding</au><au>Meng, Zhaoxu</au><au>Ruiz, Luis</au><au>Xia, Wenjie</au><au>Lee, Changgu</au><au>Kysar, Jeffrey W</au><au>Hone, James C</au><au>Keten, Sinan</au><au>Espinosa, Horacio D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2016-02-23</date><risdate>2016</risdate><volume>10</volume><issue>2</issue><spage>1820</spage><epage>1828</epage><pages>1820-1828</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemporal limitations of atomistic modeling. In this study, we combine nanomechanical experiments with coarse-grained molecular dynamics (CG-MD) simulations to elucidate the mechanisms of deformation and failure of MLG sheets. Elastic properties of graphene sheets with one to three layers are measured using film deflection tests. A nonlinear behavior in the force vs deflection curves for MLGs is observed in both experiments and simulations: during loading/unloading cycles, MLGs dissipate energy through a “recoverable slippage” mechanism. The CG-MD simulations further reveal an atomic level interlayer slippage process and suggest that the dissipated energy scales with film perimeter. Moreover, our study demonstrates that the finite shear strength between individual layers could explain the experimentally measured size-dependent strength with thickness scaling in MLG sheets.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26783825</pmid><doi>10.1021/acsnano.5b04939</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2016-02, Vol.10 (2), p.1820-1828 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1767912506 |
source | ACS Publications |
title | Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A53%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recoverable%20Slippage%20Mechanism%20in%20Multilayer%20Graphene%20Leads%20to%20Repeatable%20Energy%20Dissipation&rft.jtitle=ACS%20nano&rft.au=Wei,%20Xiaoding&rft.date=2016-02-23&rft.volume=10&rft.issue=2&rft.spage=1820&rft.epage=1828&rft.pages=1820-1828&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b04939&rft_dat=%3Cproquest_cross%3E1767912506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767912506&rft_id=info:pmid/26783825&rfr_iscdi=true |