Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation

Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemporal limitations of atomistic modeli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2016-02, Vol.10 (2), p.1820-1828
Hauptverfasser: Wei, Xiaoding, Meng, Zhaoxu, Ruiz, Luis, Xia, Wenjie, Lee, Changgu, Kysar, Jeffrey W, Hone, James C, Keten, Sinan, Espinosa, Horacio D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1828
container_issue 2
container_start_page 1820
container_title ACS nano
container_volume 10
creator Wei, Xiaoding
Meng, Zhaoxu
Ruiz, Luis
Xia, Wenjie
Lee, Changgu
Kysar, Jeffrey W
Hone, James C
Keten, Sinan
Espinosa, Horacio D
description Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemporal limitations of atomistic modeling. In this study, we combine nanomechanical experiments with coarse-grained molecular dynamics (CG-MD) simulations to elucidate the mechanisms of deformation and failure of MLG sheets. Elastic properties of graphene sheets with one to three layers are measured using film deflection tests. A nonlinear behavior in the force vs deflection curves for MLGs is observed in both experiments and simulations: during loading/unloading cycles, MLGs dissipate energy through a “recoverable slippage” mechanism. The CG-MD simulations further reveal an atomic level interlayer slippage process and suggest that the dissipated energy scales with film perimeter. Moreover, our study demonstrates that the finite shear strength between individual layers could explain the experimentally measured size-dependent strength with thickness scaling in MLG sheets.
doi_str_mv 10.1021/acsnano.5b04939
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1767912506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1767912506</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-4d6d2ff3359c08de07b1beb54259ba9b91ba11df132cb6a29edae3543175e87d3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMobk7P3iRHQbolzdI2R5lzChNhKngQykv7umV0aU1aYf-91c3dPL3v8Ps-eD9CLjkbchbyEWTegq2GUrOxEuqI9LkSUcCS6P34kCXvkTPv14zJOImjU9ILozgRSSj75GOBWfWFDnSJ9KU0dQ1LpE-YrcAav6HG0qe2bEwJW3R05qBeoUU6R8g9bSq6wBqh-W1PLbrllt4Z700NjansOTkpoPR4sb8D8nY_fZ08BPPn2ePkdh6AUKoJxnmUh0UhhFQZS3JkseYatRyHUmlQWnENnOcFF2GmIwgV5oBCjgWPJSZxLgbkerdbu-qzRd-kG-MzLEuwWLU-5XEUKx5KFnXoaIdmrvLeYZHWzmzAbVPO0h-l6V5pulfaNa72463eYH7g_xx2wM0O6Jrpumqd7X79d-4bSPaDVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767912506</pqid></control><display><type>article</type><title>Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation</title><source>ACS Publications</source><creator>Wei, Xiaoding ; Meng, Zhaoxu ; Ruiz, Luis ; Xia, Wenjie ; Lee, Changgu ; Kysar, Jeffrey W ; Hone, James C ; Keten, Sinan ; Espinosa, Horacio D</creator><creatorcontrib>Wei, Xiaoding ; Meng, Zhaoxu ; Ruiz, Luis ; Xia, Wenjie ; Lee, Changgu ; Kysar, Jeffrey W ; Hone, James C ; Keten, Sinan ; Espinosa, Horacio D</creatorcontrib><description>Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemporal limitations of atomistic modeling. In this study, we combine nanomechanical experiments with coarse-grained molecular dynamics (CG-MD) simulations to elucidate the mechanisms of deformation and failure of MLG sheets. Elastic properties of graphene sheets with one to three layers are measured using film deflection tests. A nonlinear behavior in the force vs deflection curves for MLGs is observed in both experiments and simulations: during loading/unloading cycles, MLGs dissipate energy through a “recoverable slippage” mechanism. The CG-MD simulations further reveal an atomic level interlayer slippage process and suggest that the dissipated energy scales with film perimeter. Moreover, our study demonstrates that the finite shear strength between individual layers could explain the experimentally measured size-dependent strength with thickness scaling in MLG sheets.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b04939</identifier><identifier>PMID: 26783825</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2016-02, Vol.10 (2), p.1820-1828</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-4d6d2ff3359c08de07b1beb54259ba9b91ba11df132cb6a29edae3543175e87d3</citedby><cites>FETCH-LOGICAL-a399t-4d6d2ff3359c08de07b1beb54259ba9b91ba11df132cb6a29edae3543175e87d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.5b04939$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.5b04939$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26783825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Xiaoding</creatorcontrib><creatorcontrib>Meng, Zhaoxu</creatorcontrib><creatorcontrib>Ruiz, Luis</creatorcontrib><creatorcontrib>Xia, Wenjie</creatorcontrib><creatorcontrib>Lee, Changgu</creatorcontrib><creatorcontrib>Kysar, Jeffrey W</creatorcontrib><creatorcontrib>Hone, James C</creatorcontrib><creatorcontrib>Keten, Sinan</creatorcontrib><creatorcontrib>Espinosa, Horacio D</creatorcontrib><title>Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemporal limitations of atomistic modeling. In this study, we combine nanomechanical experiments with coarse-grained molecular dynamics (CG-MD) simulations to elucidate the mechanisms of deformation and failure of MLG sheets. Elastic properties of graphene sheets with one to three layers are measured using film deflection tests. A nonlinear behavior in the force vs deflection curves for MLGs is observed in both experiments and simulations: during loading/unloading cycles, MLGs dissipate energy through a “recoverable slippage” mechanism. The CG-MD simulations further reveal an atomic level interlayer slippage process and suggest that the dissipated energy scales with film perimeter. Moreover, our study demonstrates that the finite shear strength between individual layers could explain the experimentally measured size-dependent strength with thickness scaling in MLG sheets.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMobk7P3iRHQbolzdI2R5lzChNhKngQykv7umV0aU1aYf-91c3dPL3v8Ps-eD9CLjkbchbyEWTegq2GUrOxEuqI9LkSUcCS6P34kCXvkTPv14zJOImjU9ILozgRSSj75GOBWfWFDnSJ9KU0dQ1LpE-YrcAav6HG0qe2bEwJW3R05qBeoUU6R8g9bSq6wBqh-W1PLbrllt4Z700NjansOTkpoPR4sb8D8nY_fZ08BPPn2ePkdh6AUKoJxnmUh0UhhFQZS3JkseYatRyHUmlQWnENnOcFF2GmIwgV5oBCjgWPJSZxLgbkerdbu-qzRd-kG-MzLEuwWLU-5XEUKx5KFnXoaIdmrvLeYZHWzmzAbVPO0h-l6V5pulfaNa72463eYH7g_xx2wM0O6Jrpumqd7X79d-4bSPaDVg</recordid><startdate>20160223</startdate><enddate>20160223</enddate><creator>Wei, Xiaoding</creator><creator>Meng, Zhaoxu</creator><creator>Ruiz, Luis</creator><creator>Xia, Wenjie</creator><creator>Lee, Changgu</creator><creator>Kysar, Jeffrey W</creator><creator>Hone, James C</creator><creator>Keten, Sinan</creator><creator>Espinosa, Horacio D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160223</creationdate><title>Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation</title><author>Wei, Xiaoding ; Meng, Zhaoxu ; Ruiz, Luis ; Xia, Wenjie ; Lee, Changgu ; Kysar, Jeffrey W ; Hone, James C ; Keten, Sinan ; Espinosa, Horacio D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-4d6d2ff3359c08de07b1beb54259ba9b91ba11df132cb6a29edae3543175e87d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xiaoding</creatorcontrib><creatorcontrib>Meng, Zhaoxu</creatorcontrib><creatorcontrib>Ruiz, Luis</creatorcontrib><creatorcontrib>Xia, Wenjie</creatorcontrib><creatorcontrib>Lee, Changgu</creatorcontrib><creatorcontrib>Kysar, Jeffrey W</creatorcontrib><creatorcontrib>Hone, James C</creatorcontrib><creatorcontrib>Keten, Sinan</creatorcontrib><creatorcontrib>Espinosa, Horacio D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xiaoding</au><au>Meng, Zhaoxu</au><au>Ruiz, Luis</au><au>Xia, Wenjie</au><au>Lee, Changgu</au><au>Kysar, Jeffrey W</au><au>Hone, James C</au><au>Keten, Sinan</au><au>Espinosa, Horacio D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2016-02-23</date><risdate>2016</risdate><volume>10</volume><issue>2</issue><spage>1820</spage><epage>1828</epage><pages>1820-1828</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemporal limitations of atomistic modeling. In this study, we combine nanomechanical experiments with coarse-grained molecular dynamics (CG-MD) simulations to elucidate the mechanisms of deformation and failure of MLG sheets. Elastic properties of graphene sheets with one to three layers are measured using film deflection tests. A nonlinear behavior in the force vs deflection curves for MLGs is observed in both experiments and simulations: during loading/unloading cycles, MLGs dissipate energy through a “recoverable slippage” mechanism. The CG-MD simulations further reveal an atomic level interlayer slippage process and suggest that the dissipated energy scales with film perimeter. Moreover, our study demonstrates that the finite shear strength between individual layers could explain the experimentally measured size-dependent strength with thickness scaling in MLG sheets.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26783825</pmid><doi>10.1021/acsnano.5b04939</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2016-02, Vol.10 (2), p.1820-1828
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1767912506
source ACS Publications
title Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A53%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recoverable%20Slippage%20Mechanism%20in%20Multilayer%20Graphene%20Leads%20to%20Repeatable%20Energy%20Dissipation&rft.jtitle=ACS%20nano&rft.au=Wei,%20Xiaoding&rft.date=2016-02-23&rft.volume=10&rft.issue=2&rft.spage=1820&rft.epage=1828&rft.pages=1820-1828&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b04939&rft_dat=%3Cproquest_cross%3E1767912506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767912506&rft_id=info:pmid/26783825&rfr_iscdi=true