Slowing Translation between Protein Domains by Increasing Affinity between mRNAs and the Ribosomal Anti-Shine–Dalgarno Sequence Improves Solubility
Recent studies have demonstrated that effective protein production requires coordination of multiple cotranslational cellular processes, which are heavily affected by translation timing. Until recently, protein engineering has focused on codon optimization to maximize protein production rates, mostl...
Gespeichert in:
Veröffentlicht in: | ACS synthetic biology 2016-02, Vol.5 (2), p.133-145 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 145 |
---|---|
container_issue | 2 |
container_start_page | 133 |
container_title | ACS synthetic biology |
container_volume | 5 |
creator | Vasquez, Kevin A Hatridge, Taylor A Curtis, Nicholas C Contreras, Lydia M |
description | Recent studies have demonstrated that effective protein production requires coordination of multiple cotranslational cellular processes, which are heavily affected by translation timing. Until recently, protein engineering has focused on codon optimization to maximize protein production rates, mostly considering the effect of tRNA abundance. However, as it relates to complex multidomain proteins, it has been hypothesized that strategic translational pauses between domains and between distinct individual structural motifs can prevent interactions between nascent chain fragments that generate kinetically trapped misfolded peptides and thereby enhance protein yields. In this study, we introduce synthetic transient pauses between structural domains in a heterologous model protein based on designed patterns of affinity between the mRNA and the anti-Shine–Dalgarno (aSD) sequence on the ribosome. We demonstrate that optimizing translation attenuation at domain boundaries can predictably affect solubility patterns in bacteria. Exploration of the affinity space showed that modifying less than 1% of the nucleotides (on a small 12 amino acid linker) can vary soluble protein yields up to ∼7-fold without altering the primary sequence of the protein. In the context of longer linkers, where a larger number of distinct structural motifs can fold outside the ribosome, optimal synonymous codon variations resulted in an additional 2.1-fold increase in solubility, relative to that of nonoptimized linkers of the same length. While rational construction of 54 linkers of various affinities showed a significant correlation between protein solubility and predicted affinity, only weaker correlations were observed between tRNA abundance and protein solubility. We also demonstrate that naturally occurring high-affinity clusters are present between structural domains of β-galactosidase, one of Escherichia coli’s largest native proteins. Interdomain ribosomal affinity is an important factor that has not previously been explored in the context of protein engineering. |
doi_str_mv | 10.1021/acssynbio.5b00193 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1767076897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1767076897</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-e1c0ff10fe45ea30cc769af7c48962211638337fb4a6452d33d90c96e38dcae83</originalsourceid><addsrcrecordid>eNp9kb1OwzAURi0EAgQ8AAvyyBKw48ZJxqrlpxICRGGOHOcaXDl2sROqbrwD4gV5EoxaKia82MM5n-71h9AxJWeUpPRcyBCWttbuLKsJoSXbQvsp5TTJCGfbf9576CiEGYkny1jGil20l3JO8iIt9tHn1LiFts_40QsbjOi0s7iGbgFg8b13HWiLx64V2gZcL_HESg8i_BhDpbTV3XKDtw-3w4CFbXD3AvhB1y5E0eCh7XQyfdEWvt4_xsI8C28dnsJrD1YCnrRz794g4Kkzfa1NjDxEO0qYAEfr-wA9XV48jq6Tm7uryWh4kwjGyi4BKolSlCgYZCAYkTLnpVC5HBQlT1NKOSsYy1U9EHyQpQ1jTUlkyYEVjRRQsAN0usqNE8RpQle1OkgwRlhwfahoznOS86LMI0pXqPQuBA-qmnvdCr-sKKl-Cqk2hVTrQqJzso7v6xaajfH7_RFIVkB0q5nrvY3b_hP4DZeKnCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767076897</pqid></control><display><type>article</type><title>Slowing Translation between Protein Domains by Increasing Affinity between mRNAs and the Ribosomal Anti-Shine–Dalgarno Sequence Improves Solubility</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Vasquez, Kevin A ; Hatridge, Taylor A ; Curtis, Nicholas C ; Contreras, Lydia M</creator><creatorcontrib>Vasquez, Kevin A ; Hatridge, Taylor A ; Curtis, Nicholas C ; Contreras, Lydia M</creatorcontrib><description>Recent studies have demonstrated that effective protein production requires coordination of multiple cotranslational cellular processes, which are heavily affected by translation timing. Until recently, protein engineering has focused on codon optimization to maximize protein production rates, mostly considering the effect of tRNA abundance. However, as it relates to complex multidomain proteins, it has been hypothesized that strategic translational pauses between domains and between distinct individual structural motifs can prevent interactions between nascent chain fragments that generate kinetically trapped misfolded peptides and thereby enhance protein yields. In this study, we introduce synthetic transient pauses between structural domains in a heterologous model protein based on designed patterns of affinity between the mRNA and the anti-Shine–Dalgarno (aSD) sequence on the ribosome. We demonstrate that optimizing translation attenuation at domain boundaries can predictably affect solubility patterns in bacteria. Exploration of the affinity space showed that modifying less than 1% of the nucleotides (on a small 12 amino acid linker) can vary soluble protein yields up to ∼7-fold without altering the primary sequence of the protein. In the context of longer linkers, where a larger number of distinct structural motifs can fold outside the ribosome, optimal synonymous codon variations resulted in an additional 2.1-fold increase in solubility, relative to that of nonoptimized linkers of the same length. While rational construction of 54 linkers of various affinities showed a significant correlation between protein solubility and predicted affinity, only weaker correlations were observed between tRNA abundance and protein solubility. We also demonstrate that naturally occurring high-affinity clusters are present between structural domains of β-galactosidase, one of Escherichia coli’s largest native proteins. Interdomain ribosomal affinity is an important factor that has not previously been explored in the context of protein engineering.</description><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1021/acssynbio.5b00193</identifier><identifier>PMID: 26607828</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - biosynthesis ; Escherichia coli Proteins - genetics ; Peptide Chain Elongation, Translational - physiology ; Ribosomes - metabolism ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Transfer - metabolism</subject><ispartof>ACS synthetic biology, 2016-02, Vol.5 (2), p.133-145</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-e1c0ff10fe45ea30cc769af7c48962211638337fb4a6452d33d90c96e38dcae83</citedby><cites>FETCH-LOGICAL-a339t-e1c0ff10fe45ea30cc769af7c48962211638337fb4a6452d33d90c96e38dcae83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssynbio.5b00193$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssynbio.5b00193$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26607828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasquez, Kevin A</creatorcontrib><creatorcontrib>Hatridge, Taylor A</creatorcontrib><creatorcontrib>Curtis, Nicholas C</creatorcontrib><creatorcontrib>Contreras, Lydia M</creatorcontrib><title>Slowing Translation between Protein Domains by Increasing Affinity between mRNAs and the Ribosomal Anti-Shine–Dalgarno Sequence Improves Solubility</title><title>ACS synthetic biology</title><addtitle>ACS Synth. Biol</addtitle><description>Recent studies have demonstrated that effective protein production requires coordination of multiple cotranslational cellular processes, which are heavily affected by translation timing. Until recently, protein engineering has focused on codon optimization to maximize protein production rates, mostly considering the effect of tRNA abundance. However, as it relates to complex multidomain proteins, it has been hypothesized that strategic translational pauses between domains and between distinct individual structural motifs can prevent interactions between nascent chain fragments that generate kinetically trapped misfolded peptides and thereby enhance protein yields. In this study, we introduce synthetic transient pauses between structural domains in a heterologous model protein based on designed patterns of affinity between the mRNA and the anti-Shine–Dalgarno (aSD) sequence on the ribosome. We demonstrate that optimizing translation attenuation at domain boundaries can predictably affect solubility patterns in bacteria. Exploration of the affinity space showed that modifying less than 1% of the nucleotides (on a small 12 amino acid linker) can vary soluble protein yields up to ∼7-fold without altering the primary sequence of the protein. In the context of longer linkers, where a larger number of distinct structural motifs can fold outside the ribosome, optimal synonymous codon variations resulted in an additional 2.1-fold increase in solubility, relative to that of nonoptimized linkers of the same length. While rational construction of 54 linkers of various affinities showed a significant correlation between protein solubility and predicted affinity, only weaker correlations were observed between tRNA abundance and protein solubility. We also demonstrate that naturally occurring high-affinity clusters are present between structural domains of β-galactosidase, one of Escherichia coli’s largest native proteins. Interdomain ribosomal affinity is an important factor that has not previously been explored in the context of protein engineering.</description><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - biosynthesis</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Peptide Chain Elongation, Translational - physiology</subject><subject>Ribosomes - metabolism</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Transfer - metabolism</subject><issn>2161-5063</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kb1OwzAURi0EAgQ8AAvyyBKw48ZJxqrlpxICRGGOHOcaXDl2sROqbrwD4gV5EoxaKia82MM5n-71h9AxJWeUpPRcyBCWttbuLKsJoSXbQvsp5TTJCGfbf9576CiEGYkny1jGil20l3JO8iIt9tHn1LiFts_40QsbjOi0s7iGbgFg8b13HWiLx64V2gZcL_HESg8i_BhDpbTV3XKDtw-3w4CFbXD3AvhB1y5E0eCh7XQyfdEWvt4_xsI8C28dnsJrD1YCnrRz794g4Kkzfa1NjDxEO0qYAEfr-wA9XV48jq6Tm7uryWh4kwjGyi4BKolSlCgYZCAYkTLnpVC5HBQlT1NKOSsYy1U9EHyQpQ1jTUlkyYEVjRRQsAN0usqNE8RpQle1OkgwRlhwfahoznOS86LMI0pXqPQuBA-qmnvdCr-sKKl-Cqk2hVTrQqJzso7v6xaajfH7_RFIVkB0q5nrvY3b_hP4DZeKnCU</recordid><startdate>20160219</startdate><enddate>20160219</enddate><creator>Vasquez, Kevin A</creator><creator>Hatridge, Taylor A</creator><creator>Curtis, Nicholas C</creator><creator>Contreras, Lydia M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160219</creationdate><title>Slowing Translation between Protein Domains by Increasing Affinity between mRNAs and the Ribosomal Anti-Shine–Dalgarno Sequence Improves Solubility</title><author>Vasquez, Kevin A ; Hatridge, Taylor A ; Curtis, Nicholas C ; Contreras, Lydia M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-e1c0ff10fe45ea30cc769af7c48962211638337fb4a6452d33d90c96e38dcae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - biosynthesis</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Peptide Chain Elongation, Translational - physiology</topic><topic>Ribosomes - metabolism</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Transfer - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasquez, Kevin A</creatorcontrib><creatorcontrib>Hatridge, Taylor A</creatorcontrib><creatorcontrib>Curtis, Nicholas C</creatorcontrib><creatorcontrib>Contreras, Lydia M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasquez, Kevin A</au><au>Hatridge, Taylor A</au><au>Curtis, Nicholas C</au><au>Contreras, Lydia M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slowing Translation between Protein Domains by Increasing Affinity between mRNAs and the Ribosomal Anti-Shine–Dalgarno Sequence Improves Solubility</atitle><jtitle>ACS synthetic biology</jtitle><addtitle>ACS Synth. Biol</addtitle><date>2016-02-19</date><risdate>2016</risdate><volume>5</volume><issue>2</issue><spage>133</spage><epage>145</epage><pages>133-145</pages><issn>2161-5063</issn><eissn>2161-5063</eissn><abstract>Recent studies have demonstrated that effective protein production requires coordination of multiple cotranslational cellular processes, which are heavily affected by translation timing. Until recently, protein engineering has focused on codon optimization to maximize protein production rates, mostly considering the effect of tRNA abundance. However, as it relates to complex multidomain proteins, it has been hypothesized that strategic translational pauses between domains and between distinct individual structural motifs can prevent interactions between nascent chain fragments that generate kinetically trapped misfolded peptides and thereby enhance protein yields. In this study, we introduce synthetic transient pauses between structural domains in a heterologous model protein based on designed patterns of affinity between the mRNA and the anti-Shine–Dalgarno (aSD) sequence on the ribosome. We demonstrate that optimizing translation attenuation at domain boundaries can predictably affect solubility patterns in bacteria. Exploration of the affinity space showed that modifying less than 1% of the nucleotides (on a small 12 amino acid linker) can vary soluble protein yields up to ∼7-fold without altering the primary sequence of the protein. In the context of longer linkers, where a larger number of distinct structural motifs can fold outside the ribosome, optimal synonymous codon variations resulted in an additional 2.1-fold increase in solubility, relative to that of nonoptimized linkers of the same length. While rational construction of 54 linkers of various affinities showed a significant correlation between protein solubility and predicted affinity, only weaker correlations were observed between tRNA abundance and protein solubility. We also demonstrate that naturally occurring high-affinity clusters are present between structural domains of β-galactosidase, one of Escherichia coli’s largest native proteins. Interdomain ribosomal affinity is an important factor that has not previously been explored in the context of protein engineering.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26607828</pmid><doi>10.1021/acssynbio.5b00193</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2161-5063 |
ispartof | ACS synthetic biology, 2016-02, Vol.5 (2), p.133-145 |
issn | 2161-5063 2161-5063 |
language | eng |
recordid | cdi_proquest_miscellaneous_1767076897 |
source | MEDLINE; American Chemical Society Journals |
subjects | Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - biosynthesis Escherichia coli Proteins - genetics Peptide Chain Elongation, Translational - physiology Ribosomes - metabolism RNA, Bacterial - genetics RNA, Bacterial - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism RNA, Transfer - metabolism |
title | Slowing Translation between Protein Domains by Increasing Affinity between mRNAs and the Ribosomal Anti-Shine–Dalgarno Sequence Improves Solubility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slowing%20Translation%20between%20Protein%20Domains%20by%20Increasing%20Affinity%20between%20mRNAs%20and%20the%20Ribosomal%20Anti-Shine%E2%80%93Dalgarno%20Sequence%20Improves%20Solubility&rft.jtitle=ACS%20synthetic%20biology&rft.au=Vasquez,%20Kevin%20A&rft.date=2016-02-19&rft.volume=5&rft.issue=2&rft.spage=133&rft.epage=145&rft.pages=133-145&rft.issn=2161-5063&rft.eissn=2161-5063&rft_id=info:doi/10.1021/acssynbio.5b00193&rft_dat=%3Cproquest_cross%3E1767076897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767076897&rft_id=info:pmid/26607828&rfr_iscdi=true |