The stable isotope geochemistry of volcanic lakes, with examples from Indonesia

Stable isotope compositions ( delta D, delta super(18)O and delta super(34)S) of volcanic lake waters, gas condensates and spring waters from Indonesia, Italy, Japan, and Russia were measured. The spring fluids and gas samples plot in a broad array between meteoric waters and local high-temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of volcanology and geothermal research 2000-04, Vol.97 (1-4), p.309-327
Hauptverfasser: VAREKAMP, J. C, KREULEN, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 327
container_issue 1-4
container_start_page 309
container_title Journal of volcanology and geothermal research
container_volume 97
creator VAREKAMP, J. C
KREULEN, R
description Stable isotope compositions ( delta D, delta super(18)O and delta super(34)S) of volcanic lake waters, gas condensates and spring waters from Indonesia, Italy, Japan, and Russia were measured. The spring fluids and gas samples plot in a broad array between meteoric waters and local high-temperature volcanic gas compositions. The delta D and delta super(18)O data from volcanic lakes in East Indonesia plot in a concave band ranging from local meteoric waters to evaporated fluids to waters heavier than local high-temperature volcanic gases. We investigated isotopic fractionation processes in volcanic lakes at elevated temperatures with simultaneous mixing of meteoric waters and volcanic gases. An elevated lake water temperature gives enhanced kinetic isotope fractionation and changes in equilibrium fractionation factors, providing relatively flat isotope evolution curves in delta super(18)O- delta D) diagrams. A numerical simulation model is used to derive the timescales of isotopic evolution of crater lakes as a function of atmospheric parameters, lake water temperature and fluxes of meteoric water, volcanic gas input, evaporation, and seepage losses. The same model is used to derive the flux magnitude of the Keli Mutu lakes in Indonesia. The calculated volcanic gas fluxes are of the same order as those derived from energy budget models or direct gas flux measurements in open craters (several 100 m super(3) volcanic water/day) and indicate a water residence time of 1-2 decades. The delta super(34)S data from the Keli Mutu lakes show a much wider range than those from gases and springs, which is probably related to the precipitation of sulfur in these acid brine lakes. The isotopic mass balance and S/Cl values suggest that about half of the sulfur input in the hottest Keli Mutu lake is converted into native sulfur.
doi_str_mv 10.1016/S0377-0273(99)00175-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17670549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17670549</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-686b5f5e443a98eb7357f1dfac8b40b5ce132d047d2d65297008483956b093293</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QQgIomD1pGma5FKGH4PBLpzXIU1PXbVtatOp-_d2H-zq3Dzv-x4eQi4Z3DNg6cMbcCkjiCW_0foWgEkRJUdkxJSMoxS0PCajA3JKzkL4hIECBSMyXyyRht5mFdIy-N63SD_QuyXWZei7NfUF_fGVs03paGW_MNzR37JfUvyzdVthoEXnazptct9gKO05OSlsFfBif8fk_flpMXmNZvOX6eRxFlmuRB-lKs1EITBJuNUKM8mFLFheWKeyBDLhkPE4h0TmcZ6KWEsAlSiuRZqB5rHmY3K96207_73C0JvhX4dVZRv0q2CYTCWIZAOKHeg6H0KHhWm7srbd2jAwG31mq89s3BitzVafSYbc1X7ABmerorONK8MhrIYBBvwf0WRvBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17670549</pqid></control><display><type>article</type><title>The stable isotope geochemistry of volcanic lakes, with examples from Indonesia</title><source>Access via ScienceDirect (Elsevier)</source><creator>VAREKAMP, J. C ; KREULEN, R</creator><creatorcontrib>VAREKAMP, J. C ; KREULEN, R</creatorcontrib><description>Stable isotope compositions ( delta D, delta super(18)O and delta super(34)S) of volcanic lake waters, gas condensates and spring waters from Indonesia, Italy, Japan, and Russia were measured. The spring fluids and gas samples plot in a broad array between meteoric waters and local high-temperature volcanic gas compositions. The delta D and delta super(18)O data from volcanic lakes in East Indonesia plot in a concave band ranging from local meteoric waters to evaporated fluids to waters heavier than local high-temperature volcanic gases. We investigated isotopic fractionation processes in volcanic lakes at elevated temperatures with simultaneous mixing of meteoric waters and volcanic gases. An elevated lake water temperature gives enhanced kinetic isotope fractionation and changes in equilibrium fractionation factors, providing relatively flat isotope evolution curves in delta super(18)O- delta D) diagrams. A numerical simulation model is used to derive the timescales of isotopic evolution of crater lakes as a function of atmospheric parameters, lake water temperature and fluxes of meteoric water, volcanic gas input, evaporation, and seepage losses. The same model is used to derive the flux magnitude of the Keli Mutu lakes in Indonesia. The calculated volcanic gas fluxes are of the same order as those derived from energy budget models or direct gas flux measurements in open craters (several 100 m super(3) volcanic water/day) and indicate a water residence time of 1-2 decades. The delta super(34)S data from the Keli Mutu lakes show a much wider range than those from gases and springs, which is probably related to the precipitation of sulfur in these acid brine lakes. The isotopic mass balance and S/Cl values suggest that about half of the sulfur input in the hottest Keli Mutu lake is converted into native sulfur.</description><identifier>ISSN: 0377-0273</identifier><identifier>EISSN: 1872-6097</identifier><identifier>DOI: 10.1016/S0377-0273(99)00175-4</identifier><identifier>CODEN: JVGRDQ</identifier><language>eng</language><publisher>Lausanne: Elsevier</publisher><subject>Crystalline rocks ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geochemistry ; Igneous and metamorphic rocks petrology, volcanic processes, magmas ; Indonesia, Keli Mutu L ; Mineralogy ; Silicates ; Water geochemistry</subject><ispartof>Journal of volcanology and geothermal research, 2000-04, Vol.97 (1-4), p.309-327</ispartof><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-686b5f5e443a98eb7357f1dfac8b40b5ce132d047d2d65297008483956b093293</citedby><cites>FETCH-LOGICAL-a385t-686b5f5e443a98eb7357f1dfac8b40b5ce132d047d2d65297008483956b093293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>310,311,315,781,785,790,791,23935,23936,25145,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=817610$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VAREKAMP, J. C</creatorcontrib><creatorcontrib>KREULEN, R</creatorcontrib><title>The stable isotope geochemistry of volcanic lakes, with examples from Indonesia</title><title>Journal of volcanology and geothermal research</title><description>Stable isotope compositions ( delta D, delta super(18)O and delta super(34)S) of volcanic lake waters, gas condensates and spring waters from Indonesia, Italy, Japan, and Russia were measured. The spring fluids and gas samples plot in a broad array between meteoric waters and local high-temperature volcanic gas compositions. The delta D and delta super(18)O data from volcanic lakes in East Indonesia plot in a concave band ranging from local meteoric waters to evaporated fluids to waters heavier than local high-temperature volcanic gases. We investigated isotopic fractionation processes in volcanic lakes at elevated temperatures with simultaneous mixing of meteoric waters and volcanic gases. An elevated lake water temperature gives enhanced kinetic isotope fractionation and changes in equilibrium fractionation factors, providing relatively flat isotope evolution curves in delta super(18)O- delta D) diagrams. A numerical simulation model is used to derive the timescales of isotopic evolution of crater lakes as a function of atmospheric parameters, lake water temperature and fluxes of meteoric water, volcanic gas input, evaporation, and seepage losses. The same model is used to derive the flux magnitude of the Keli Mutu lakes in Indonesia. The calculated volcanic gas fluxes are of the same order as those derived from energy budget models or direct gas flux measurements in open craters (several 100 m super(3) volcanic water/day) and indicate a water residence time of 1-2 decades. The delta super(34)S data from the Keli Mutu lakes show a much wider range than those from gases and springs, which is probably related to the precipitation of sulfur in these acid brine lakes. The isotopic mass balance and S/Cl values suggest that about half of the sulfur input in the hottest Keli Mutu lake is converted into native sulfur.</description><subject>Crystalline rocks</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geochemistry</subject><subject>Igneous and metamorphic rocks petrology, volcanic processes, magmas</subject><subject>Indonesia, Keli Mutu L</subject><subject>Mineralogy</subject><subject>Silicates</subject><subject>Water geochemistry</subject><issn>0377-0273</issn><issn>1872-6097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKc_QQgIomD1pGma5FKGH4PBLpzXIU1PXbVtatOp-_d2H-zq3Dzv-x4eQi4Z3DNg6cMbcCkjiCW_0foWgEkRJUdkxJSMoxS0PCajA3JKzkL4hIECBSMyXyyRht5mFdIy-N63SD_QuyXWZei7NfUF_fGVs03paGW_MNzR37JfUvyzdVthoEXnazptct9gKO05OSlsFfBif8fk_flpMXmNZvOX6eRxFlmuRB-lKs1EITBJuNUKM8mFLFheWKeyBDLhkPE4h0TmcZ6KWEsAlSiuRZqB5rHmY3K96207_73C0JvhX4dVZRv0q2CYTCWIZAOKHeg6H0KHhWm7srbd2jAwG31mq89s3BitzVafSYbc1X7ABmerorONK8MhrIYBBvwf0WRvBg</recordid><startdate>20000401</startdate><enddate>20000401</enddate><creator>VAREKAMP, J. C</creator><creator>KREULEN, R</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20000401</creationdate><title>The stable isotope geochemistry of volcanic lakes, with examples from Indonesia</title><author>VAREKAMP, J. C ; KREULEN, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-686b5f5e443a98eb7357f1dfac8b40b5ce132d047d2d65297008483956b093293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Crystalline rocks</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geochemistry</topic><topic>Igneous and metamorphic rocks petrology, volcanic processes, magmas</topic><topic>Indonesia, Keli Mutu L</topic><topic>Mineralogy</topic><topic>Silicates</topic><topic>Water geochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VAREKAMP, J. C</creatorcontrib><creatorcontrib>KREULEN, R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of volcanology and geothermal research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VAREKAMP, J. C</au><au>KREULEN, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stable isotope geochemistry of volcanic lakes, with examples from Indonesia</atitle><jtitle>Journal of volcanology and geothermal research</jtitle><date>2000-04-01</date><risdate>2000</risdate><volume>97</volume><issue>1-4</issue><spage>309</spage><epage>327</epage><pages>309-327</pages><issn>0377-0273</issn><eissn>1872-6097</eissn><coden>JVGRDQ</coden><abstract>Stable isotope compositions ( delta D, delta super(18)O and delta super(34)S) of volcanic lake waters, gas condensates and spring waters from Indonesia, Italy, Japan, and Russia were measured. The spring fluids and gas samples plot in a broad array between meteoric waters and local high-temperature volcanic gas compositions. The delta D and delta super(18)O data from volcanic lakes in East Indonesia plot in a concave band ranging from local meteoric waters to evaporated fluids to waters heavier than local high-temperature volcanic gases. We investigated isotopic fractionation processes in volcanic lakes at elevated temperatures with simultaneous mixing of meteoric waters and volcanic gases. An elevated lake water temperature gives enhanced kinetic isotope fractionation and changes in equilibrium fractionation factors, providing relatively flat isotope evolution curves in delta super(18)O- delta D) diagrams. A numerical simulation model is used to derive the timescales of isotopic evolution of crater lakes as a function of atmospheric parameters, lake water temperature and fluxes of meteoric water, volcanic gas input, evaporation, and seepage losses. The same model is used to derive the flux magnitude of the Keli Mutu lakes in Indonesia. The calculated volcanic gas fluxes are of the same order as those derived from energy budget models or direct gas flux measurements in open craters (several 100 m super(3) volcanic water/day) and indicate a water residence time of 1-2 decades. The delta super(34)S data from the Keli Mutu lakes show a much wider range than those from gases and springs, which is probably related to the precipitation of sulfur in these acid brine lakes. The isotopic mass balance and S/Cl values suggest that about half of the sulfur input in the hottest Keli Mutu lake is converted into native sulfur.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier</pub><doi>10.1016/S0377-0273(99)00175-4</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-0273
ispartof Journal of volcanology and geothermal research, 2000-04, Vol.97 (1-4), p.309-327
issn 0377-0273
1872-6097
language eng
recordid cdi_proquest_miscellaneous_17670549
source Access via ScienceDirect (Elsevier)
subjects Crystalline rocks
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geochemistry
Igneous and metamorphic rocks petrology, volcanic processes, magmas
Indonesia, Keli Mutu L
Mineralogy
Silicates
Water geochemistry
title The stable isotope geochemistry of volcanic lakes, with examples from Indonesia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stable%20isotope%20geochemistry%20of%20volcanic%20lakes,%20with%20examples%20from%20Indonesia&rft.jtitle=Journal%20of%20volcanology%20and%20geothermal%20research&rft.au=VAREKAMP,%20J.%20C&rft.date=2000-04-01&rft.volume=97&rft.issue=1-4&rft.spage=309&rft.epage=327&rft.pages=309-327&rft.issn=0377-0273&rft.eissn=1872-6097&rft.coden=JVGRDQ&rft_id=info:doi/10.1016/S0377-0273(99)00175-4&rft_dat=%3Cproquest_cross%3E17670549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17670549&rft_id=info:pmid/&rfr_iscdi=true