Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy

Drought control over conductance and assimilation was assessed using eddy flux and meteorological data monitored during four summer periods from 1998 to 2001 above a closed canopy of the Mediterranean evergreen oak tree Quercus ilex. Additional discrete measurements of soil water content and predawn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2003-12, Vol.9 (12), p.1813-1824
Hauptverfasser: Rambal, Serge, Ourcival, Jean-Marc, Joffre, Richard, Mouillot, Florent, Nouvellon, Yann, Reichstein, Markus, Rocheteau, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1824
container_issue 12
container_start_page 1813
container_title Global change biology
container_volume 9
creator Rambal, Serge
Ourcival, Jean-Marc
Joffre, Richard
Mouillot, Florent
Nouvellon, Yann
Reichstein, Markus
Rocheteau, Alain
description Drought control over conductance and assimilation was assessed using eddy flux and meteorological data monitored during four summer periods from 1998 to 2001 above a closed canopy of the Mediterranean evergreen oak tree Quercus ilex. Additional discrete measurements of soil water content and predawn leaf water potential were used to characterize the severity of the drought. Canopy conductance was estimated through the big‐leaf approach of Penman–Monteith by inverting latent heat fluxes. The gross primary production (GPP) was estimated by adding ecosystem respiration to net ecosystem exchange. Ecosystem respiration was deduced from night flux when friction velocity (u*) was greater than 0.35 m s−1. Empirical equations were identified that related maximal canopy conductance and daily ecosystem GPP to relative soil water content (RWC), the ratio of current soil water content to the field capacity, and to the predawn leaf water potential. Both variables showed a strong decline with soil RWC for values lower than 0.7. The sharpest decline was observed for GPP. The curves reached zero for RWC=0.41 and 0.45 for conductance and GPP, respectively. When the predawn leaf water potential was used as a surrogate for soil water potential, both variables showed a hyperbolic decline with decreasing water potential. These results were compared with already published literature values obtained at leaf level from the same tree species. Scaling up from the leaf to ecosystem highlighted the limitation of two big‐leaf representations: Penman–Monteith and Sellers' Π factor. Neither held completely for comparing leaf and canopy fluxes. Tower measurements integrate fluxes from foliage elements clumped at several levels of organization: branch, tree, and ecosystem. The Q. ilex canopy exhibited non‐random distribution of foliage, emphasizing the need to take into account a clumping index, the factor necessary to apply the Lambert–Beer law to natural forests. Our results showed that drought is an important determinant in water losses and CO2 fluxes in water‐limited ecosystems. In spite of the limitations inherent to the big‐leaf representation of the canopy, the equations are useful for predicting the influence of environmental factors in Mediterranean woodlands and for interpreting ecosystem exchange measurements.
doi_str_mv 10.1111/j.1365-2486.2003.00687.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17669789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17669789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4787-f88f09b22fbc2d00aa56fd0275967e13311e74936b387f419a067868846ee8b13</originalsourceid><addsrcrecordid>eNqNkc1O3DAUhSNEJSjlHbxC3STYcXLtVN3AtEwrQdnws7Q8zvXgaRJP7QzMvD1Op2JZ4Y3P1T2fZZ2TZYTRgqVzvioYhzovKwlFSSkvKAUpiu1Bdvy2OJx0XeWMMn6UfYxxRZOzpHCcPX8LfrN8Gonxwxh8F4l_xjBN7caMejBI9NASHaPrXadH5wfiLdHkBls3Ygh6QD0QTNAyICZlfNzFEfsvJBrduWFJbPA96VBbMnpi9ODXu0_ZB6u7iKf_7pPs_ur73exHfn07_zm7uM5NJaTIrZSWNouytAtTtpRqXYNtaSnqBgQyzhlDUTUcFlwKW7FGUxASpKwAUS4YP8nO9u-ug_-zwTiq3kWDXZe-7TdRMQHQCNkk4-f_GwGAU8qaKlnl3mqCjzGgVevgeh12ilE1daJWaopeTdGrqRP1txO1TejXPfriOty9m1Pz2WUSCc_3uEsBb99wHX4rEFzU6vHXXN1c3TXwAKWq-CuBTqIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666300194</pqid></control><display><type>article</type><title>Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy</title><source>Wiley Blackwell Journals</source><creator>Rambal, Serge ; Ourcival, Jean-Marc ; Joffre, Richard ; Mouillot, Florent ; Nouvellon, Yann ; Reichstein, Markus ; Rocheteau, Alain</creator><creatorcontrib>Rambal, Serge ; Ourcival, Jean-Marc ; Joffre, Richard ; Mouillot, Florent ; Nouvellon, Yann ; Reichstein, Markus ; Rocheteau, Alain</creatorcontrib><description>Drought control over conductance and assimilation was assessed using eddy flux and meteorological data monitored during four summer periods from 1998 to 2001 above a closed canopy of the Mediterranean evergreen oak tree Quercus ilex. Additional discrete measurements of soil water content and predawn leaf water potential were used to characterize the severity of the drought. Canopy conductance was estimated through the big‐leaf approach of Penman–Monteith by inverting latent heat fluxes. The gross primary production (GPP) was estimated by adding ecosystem respiration to net ecosystem exchange. Ecosystem respiration was deduced from night flux when friction velocity (u*) was greater than 0.35 m s−1. Empirical equations were identified that related maximal canopy conductance and daily ecosystem GPP to relative soil water content (RWC), the ratio of current soil water content to the field capacity, and to the predawn leaf water potential. Both variables showed a strong decline with soil RWC for values lower than 0.7. The sharpest decline was observed for GPP. The curves reached zero for RWC=0.41 and 0.45 for conductance and GPP, respectively. When the predawn leaf water potential was used as a surrogate for soil water potential, both variables showed a hyperbolic decline with decreasing water potential. These results were compared with already published literature values obtained at leaf level from the same tree species. Scaling up from the leaf to ecosystem highlighted the limitation of two big‐leaf representations: Penman–Monteith and Sellers' Π factor. Neither held completely for comparing leaf and canopy fluxes. Tower measurements integrate fluxes from foliage elements clumped at several levels of organization: branch, tree, and ecosystem. The Q. ilex canopy exhibited non‐random distribution of foliage, emphasizing the need to take into account a clumping index, the factor necessary to apply the Lambert–Beer law to natural forests. Our results showed that drought is an important determinant in water losses and CO2 fluxes in water‐limited ecosystems. In spite of the limitations inherent to the big‐leaf representation of the canopy, the equations are useful for predicting the influence of environmental factors in Mediterranean woodlands and for interpreting ecosystem exchange measurements.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/j.1365-2486.2003.00687.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>evergreen Mediterranean ecosystem ; GPP ; Quercus ilex ; scaling up procedures ; stomatal and canopy conductances ; summer drought</subject><ispartof>Global change biology, 2003-12, Vol.9 (12), p.1813-1824</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4787-f88f09b22fbc2d00aa56fd0275967e13311e74936b387f419a067868846ee8b13</citedby><cites>FETCH-LOGICAL-c4787-f88f09b22fbc2d00aa56fd0275967e13311e74936b387f419a067868846ee8b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2486.2003.00687.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2486.2003.00687.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Rambal, Serge</creatorcontrib><creatorcontrib>Ourcival, Jean-Marc</creatorcontrib><creatorcontrib>Joffre, Richard</creatorcontrib><creatorcontrib>Mouillot, Florent</creatorcontrib><creatorcontrib>Nouvellon, Yann</creatorcontrib><creatorcontrib>Reichstein, Markus</creatorcontrib><creatorcontrib>Rocheteau, Alain</creatorcontrib><title>Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy</title><title>Global change biology</title><description>Drought control over conductance and assimilation was assessed using eddy flux and meteorological data monitored during four summer periods from 1998 to 2001 above a closed canopy of the Mediterranean evergreen oak tree Quercus ilex. Additional discrete measurements of soil water content and predawn leaf water potential were used to characterize the severity of the drought. Canopy conductance was estimated through the big‐leaf approach of Penman–Monteith by inverting latent heat fluxes. The gross primary production (GPP) was estimated by adding ecosystem respiration to net ecosystem exchange. Ecosystem respiration was deduced from night flux when friction velocity (u*) was greater than 0.35 m s−1. Empirical equations were identified that related maximal canopy conductance and daily ecosystem GPP to relative soil water content (RWC), the ratio of current soil water content to the field capacity, and to the predawn leaf water potential. Both variables showed a strong decline with soil RWC for values lower than 0.7. The sharpest decline was observed for GPP. The curves reached zero for RWC=0.41 and 0.45 for conductance and GPP, respectively. When the predawn leaf water potential was used as a surrogate for soil water potential, both variables showed a hyperbolic decline with decreasing water potential. These results were compared with already published literature values obtained at leaf level from the same tree species. Scaling up from the leaf to ecosystem highlighted the limitation of two big‐leaf representations: Penman–Monteith and Sellers' Π factor. Neither held completely for comparing leaf and canopy fluxes. Tower measurements integrate fluxes from foliage elements clumped at several levels of organization: branch, tree, and ecosystem. The Q. ilex canopy exhibited non‐random distribution of foliage, emphasizing the need to take into account a clumping index, the factor necessary to apply the Lambert–Beer law to natural forests. Our results showed that drought is an important determinant in water losses and CO2 fluxes in water‐limited ecosystems. In spite of the limitations inherent to the big‐leaf representation of the canopy, the equations are useful for predicting the influence of environmental factors in Mediterranean woodlands and for interpreting ecosystem exchange measurements.</description><subject>evergreen Mediterranean ecosystem</subject><subject>GPP</subject><subject>Quercus ilex</subject><subject>scaling up procedures</subject><subject>stomatal and canopy conductances</subject><subject>summer drought</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkc1O3DAUhSNEJSjlHbxC3STYcXLtVN3AtEwrQdnws7Q8zvXgaRJP7QzMvD1Op2JZ4Y3P1T2fZZ2TZYTRgqVzvioYhzovKwlFSSkvKAUpiu1Bdvy2OJx0XeWMMn6UfYxxRZOzpHCcPX8LfrN8Gonxwxh8F4l_xjBN7caMejBI9NASHaPrXadH5wfiLdHkBls3Ygh6QD0QTNAyICZlfNzFEfsvJBrduWFJbPA96VBbMnpi9ODXu0_ZB6u7iKf_7pPs_ur73exHfn07_zm7uM5NJaTIrZSWNouytAtTtpRqXYNtaSnqBgQyzhlDUTUcFlwKW7FGUxASpKwAUS4YP8nO9u-ug_-zwTiq3kWDXZe-7TdRMQHQCNkk4-f_GwGAU8qaKlnl3mqCjzGgVevgeh12ilE1daJWaopeTdGrqRP1txO1TejXPfriOty9m1Pz2WUSCc_3uEsBb99wHX4rEFzU6vHXXN1c3TXwAKWq-CuBTqIY</recordid><startdate>200312</startdate><enddate>200312</enddate><creator>Rambal, Serge</creator><creator>Ourcival, Jean-Marc</creator><creator>Joffre, Richard</creator><creator>Mouillot, Florent</creator><creator>Nouvellon, Yann</creator><creator>Reichstein, Markus</creator><creator>Rocheteau, Alain</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>KL.</scope></search><sort><creationdate>200312</creationdate><title>Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy</title><author>Rambal, Serge ; Ourcival, Jean-Marc ; Joffre, Richard ; Mouillot, Florent ; Nouvellon, Yann ; Reichstein, Markus ; Rocheteau, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4787-f88f09b22fbc2d00aa56fd0275967e13311e74936b387f419a067868846ee8b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>evergreen Mediterranean ecosystem</topic><topic>GPP</topic><topic>Quercus ilex</topic><topic>scaling up procedures</topic><topic>stomatal and canopy conductances</topic><topic>summer drought</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rambal, Serge</creatorcontrib><creatorcontrib>Ourcival, Jean-Marc</creatorcontrib><creatorcontrib>Joffre, Richard</creatorcontrib><creatorcontrib>Mouillot, Florent</creatorcontrib><creatorcontrib>Nouvellon, Yann</creatorcontrib><creatorcontrib>Reichstein, Markus</creatorcontrib><creatorcontrib>Rocheteau, Alain</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rambal, Serge</au><au>Ourcival, Jean-Marc</au><au>Joffre, Richard</au><au>Mouillot, Florent</au><au>Nouvellon, Yann</au><au>Reichstein, Markus</au><au>Rocheteau, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy</atitle><jtitle>Global change biology</jtitle><date>2003-12</date><risdate>2003</risdate><volume>9</volume><issue>12</issue><spage>1813</spage><epage>1824</epage><pages>1813-1824</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Drought control over conductance and assimilation was assessed using eddy flux and meteorological data monitored during four summer periods from 1998 to 2001 above a closed canopy of the Mediterranean evergreen oak tree Quercus ilex. Additional discrete measurements of soil water content and predawn leaf water potential were used to characterize the severity of the drought. Canopy conductance was estimated through the big‐leaf approach of Penman–Monteith by inverting latent heat fluxes. The gross primary production (GPP) was estimated by adding ecosystem respiration to net ecosystem exchange. Ecosystem respiration was deduced from night flux when friction velocity (u*) was greater than 0.35 m s−1. Empirical equations were identified that related maximal canopy conductance and daily ecosystem GPP to relative soil water content (RWC), the ratio of current soil water content to the field capacity, and to the predawn leaf water potential. Both variables showed a strong decline with soil RWC for values lower than 0.7. The sharpest decline was observed for GPP. The curves reached zero for RWC=0.41 and 0.45 for conductance and GPP, respectively. When the predawn leaf water potential was used as a surrogate for soil water potential, both variables showed a hyperbolic decline with decreasing water potential. These results were compared with already published literature values obtained at leaf level from the same tree species. Scaling up from the leaf to ecosystem highlighted the limitation of two big‐leaf representations: Penman–Monteith and Sellers' Π factor. Neither held completely for comparing leaf and canopy fluxes. Tower measurements integrate fluxes from foliage elements clumped at several levels of organization: branch, tree, and ecosystem. The Q. ilex canopy exhibited non‐random distribution of foliage, emphasizing the need to take into account a clumping index, the factor necessary to apply the Lambert–Beer law to natural forests. Our results showed that drought is an important determinant in water losses and CO2 fluxes in water‐limited ecosystems. In spite of the limitations inherent to the big‐leaf representation of the canopy, the equations are useful for predicting the influence of environmental factors in Mediterranean woodlands and for interpreting ecosystem exchange measurements.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1111/j.1365-2486.2003.00687.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2003-12, Vol.9 (12), p.1813-1824
issn 1354-1013
1365-2486
language eng
recordid cdi_proquest_miscellaneous_17669789
source Wiley Blackwell Journals
subjects evergreen Mediterranean ecosystem
GPP
Quercus ilex
scaling up procedures
stomatal and canopy conductances
summer drought
title Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drought%20controls%20over%20conductance%20and%20assimilation%20of%20a%20Mediterranean%20evergreen%20ecosystem:%20scaling%20from%20leaf%20to%20canopy&rft.jtitle=Global%20change%20biology&rft.au=Rambal,%20Serge&rft.date=2003-12&rft.volume=9&rft.issue=12&rft.spage=1813&rft.epage=1824&rft.pages=1813-1824&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/j.1365-2486.2003.00687.x&rft_dat=%3Cproquest_cross%3E17669789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666300194&rft_id=info:pmid/&rfr_iscdi=true