Probability distributions for maximum wave and crest heights
The paper discusses short- and long-term probability models of ocean waves. The Gaussian theory is reviewed, and nonlinear short-term probability distributions are derived from a narrow band second-order model. The nonlinearity has different impact on different measurement techniques, and this is fu...
Gespeichert in:
Veröffentlicht in: | Coastal engineering (Amsterdam) 2000-07, Vol.40 (4), p.329-360 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 360 |
---|---|
container_issue | 4 |
container_start_page | 329 |
container_title | Coastal engineering (Amsterdam) |
container_volume | 40 |
creator | Prevosto, Marc Krogstad, Harald E Robin, Agnès |
description | The paper discusses short- and long-term probability models of ocean waves. The Gaussian theory is reviewed, and nonlinear short-term probability distributions are derived from a narrow band second-order model. The nonlinearity has different impact on different measurement techniques, and this is further demonstrated for wave data from the WAVEMOD Crete measurement campaign and laser data from the North Sea. Finally, we give some examples on how the short-term statistics may be used to estimate the probability distributions for the maximum waves during individual storms as well as in a wave climate described by long-term distributions. |
doi_str_mv | 10.1016/S0378-3839(00)00017-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17663632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037838390000017X</els_id><sourcerecordid>17663632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-2edfcaaf6f7ea07e5fe70350f0b45eb6ec38b8c0d8439957984b49d7074f10633</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QZiV6GL0pplJMiCIFF8gKKjQXcgkNzYyj5rMVPvvnbbi1tXdfOdw7kfIMYVzCpRfvAATMmWSFacAZwBARTrbISMqxSQVTBS7ZPSH7JODGD8GCLjMR-TyObSlLn3lu1VifeyCL_vOt01MXBuSWn_7uq-TL73ERDc2MQFjl8zRv8-7eEj2nK4iHv3eMXm7vXmd3qePT3cP0-vH1GRMdOkErTNaO-4EahCYOxTAcnBQZjmWHA2TpTRgZcaKIheFzMqssAJE5ihwxsbkZNu7CO1nPwxQtY8Gq0o32PZRUcE542wygPkWNKGNMaBTi-BrHVaKglq7UhtXai1CAaiNKzUbclfbHA5fLD0GFY3HxqD1AU2nbOv_afgB_41xsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17663632</pqid></control><display><type>article</type><title>Probability distributions for maximum wave and crest heights</title><source>Access via ScienceDirect (Elsevier)</source><creator>Prevosto, Marc ; Krogstad, Harald E ; Robin, Agnès</creator><creatorcontrib>Prevosto, Marc ; Krogstad, Harald E ; Robin, Agnès</creatorcontrib><description>The paper discusses short- and long-term probability models of ocean waves. The Gaussian theory is reviewed, and nonlinear short-term probability distributions are derived from a narrow band second-order model. The nonlinearity has different impact on different measurement techniques, and this is further demonstrated for wave data from the WAVEMOD Crete measurement campaign and laser data from the North Sea. Finally, we give some examples on how the short-term statistics may be used to estimate the probability distributions for the maximum waves during individual storms as well as in a wave climate described by long-term distributions.</description><identifier>ISSN: 0378-3839</identifier><identifier>EISSN: 1872-7379</identifier><identifier>DOI: 10.1016/S0378-3839(00)00017-X</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Marine ; Maximum crest height ; Maximum wave height ; Narrow-band model ; Non-linear models ; Probability distribution</subject><ispartof>Coastal engineering (Amsterdam), 2000-07, Vol.40 (4), p.329-360</ispartof><rights>2000 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-2edfcaaf6f7ea07e5fe70350f0b45eb6ec38b8c0d8439957984b49d7074f10633</citedby><cites>FETCH-LOGICAL-c437t-2edfcaaf6f7ea07e5fe70350f0b45eb6ec38b8c0d8439957984b49d7074f10633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0378-3839(00)00017-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Prevosto, Marc</creatorcontrib><creatorcontrib>Krogstad, Harald E</creatorcontrib><creatorcontrib>Robin, Agnès</creatorcontrib><title>Probability distributions for maximum wave and crest heights</title><title>Coastal engineering (Amsterdam)</title><description>The paper discusses short- and long-term probability models of ocean waves. The Gaussian theory is reviewed, and nonlinear short-term probability distributions are derived from a narrow band second-order model. The nonlinearity has different impact on different measurement techniques, and this is further demonstrated for wave data from the WAVEMOD Crete measurement campaign and laser data from the North Sea. Finally, we give some examples on how the short-term statistics may be used to estimate the probability distributions for the maximum waves during individual storms as well as in a wave climate described by long-term distributions.</description><subject>Marine</subject><subject>Maximum crest height</subject><subject>Maximum wave height</subject><subject>Narrow-band model</subject><subject>Non-linear models</subject><subject>Probability distribution</subject><issn>0378-3839</issn><issn>1872-7379</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QZiV6GL0pplJMiCIFF8gKKjQXcgkNzYyj5rMVPvvnbbi1tXdfOdw7kfIMYVzCpRfvAATMmWSFacAZwBARTrbISMqxSQVTBS7ZPSH7JODGD8GCLjMR-TyObSlLn3lu1VifeyCL_vOt01MXBuSWn_7uq-TL73ERDc2MQFjl8zRv8-7eEj2nK4iHv3eMXm7vXmd3qePT3cP0-vH1GRMdOkErTNaO-4EahCYOxTAcnBQZjmWHA2TpTRgZcaKIheFzMqssAJE5ihwxsbkZNu7CO1nPwxQtY8Gq0o32PZRUcE542wygPkWNKGNMaBTi-BrHVaKglq7UhtXai1CAaiNKzUbclfbHA5fLD0GFY3HxqD1AU2nbOv_afgB_41xsg</recordid><startdate>20000701</startdate><enddate>20000701</enddate><creator>Prevosto, Marc</creator><creator>Krogstad, Harald E</creator><creator>Robin, Agnès</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20000701</creationdate><title>Probability distributions for maximum wave and crest heights</title><author>Prevosto, Marc ; Krogstad, Harald E ; Robin, Agnès</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-2edfcaaf6f7ea07e5fe70350f0b45eb6ec38b8c0d8439957984b49d7074f10633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Marine</topic><topic>Maximum crest height</topic><topic>Maximum wave height</topic><topic>Narrow-band model</topic><topic>Non-linear models</topic><topic>Probability distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prevosto, Marc</creatorcontrib><creatorcontrib>Krogstad, Harald E</creatorcontrib><creatorcontrib>Robin, Agnès</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Coastal engineering (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prevosto, Marc</au><au>Krogstad, Harald E</au><au>Robin, Agnès</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probability distributions for maximum wave and crest heights</atitle><jtitle>Coastal engineering (Amsterdam)</jtitle><date>2000-07-01</date><risdate>2000</risdate><volume>40</volume><issue>4</issue><spage>329</spage><epage>360</epage><pages>329-360</pages><issn>0378-3839</issn><eissn>1872-7379</eissn><abstract>The paper discusses short- and long-term probability models of ocean waves. The Gaussian theory is reviewed, and nonlinear short-term probability distributions are derived from a narrow band second-order model. The nonlinearity has different impact on different measurement techniques, and this is further demonstrated for wave data from the WAVEMOD Crete measurement campaign and laser data from the North Sea. Finally, we give some examples on how the short-term statistics may be used to estimate the probability distributions for the maximum waves during individual storms as well as in a wave climate described by long-term distributions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0378-3839(00)00017-X</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-3839 |
ispartof | Coastal engineering (Amsterdam), 2000-07, Vol.40 (4), p.329-360 |
issn | 0378-3839 1872-7379 |
language | eng |
recordid | cdi_proquest_miscellaneous_17663632 |
source | Access via ScienceDirect (Elsevier) |
subjects | Marine Maximum crest height Maximum wave height Narrow-band model Non-linear models Probability distribution |
title | Probability distributions for maximum wave and crest heights |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probability%20distributions%20for%20maximum%20wave%20and%20crest%20heights&rft.jtitle=Coastal%20engineering%20(Amsterdam)&rft.au=Prevosto,%20Marc&rft.date=2000-07-01&rft.volume=40&rft.issue=4&rft.spage=329&rft.epage=360&rft.pages=329-360&rft.issn=0378-3839&rft.eissn=1872-7379&rft_id=info:doi/10.1016/S0378-3839(00)00017-X&rft_dat=%3Cproquest_cross%3E17663632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17663632&rft_id=info:pmid/&rft_els_id=S037838390000017X&rfr_iscdi=true |