Least Asymmetry Centering Method and Comparisons

The interpretation of astronomical photometry, astrometry, and orbit determination data depends on accurately and consistently identifying the center of the target object's photometric point spread function in the presence of noise. We introduce a new technique, called least asymmetry, which is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Astronomical Society of the Pacific 2014-12, Vol.126 (946), p.1092-1101
Hauptverfasser: Lust, Nate B., Britt, Daniel, Harrington, Joseph, Nymeyer, Sarah, Stevenson, Kevin B., Ross, Emily L., Bowman, William, Fraine, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1101
container_issue 946
container_start_page 1092
container_title Publications of the Astronomical Society of the Pacific
container_volume 126
creator Lust, Nate B.
Britt, Daniel
Harrington, Joseph
Nymeyer, Sarah
Stevenson, Kevin B.
Ross, Emily L.
Bowman, William
Fraine, Jonathan
description The interpretation of astronomical photometry, astrometry, and orbit determination data depends on accurately and consistently identifying the center of the target object's photometric point spread function in the presence of noise. We introduce a new technique, called least asymmetry, which is designed to find the point about which the distribution is most symmetric. This technique, in addition to the commonly used techniques Gaussian fitting and center of light, was tested against synthetic datasets under realistic ranges of noise and photometric gain. With subpixel accuracy, we compare the determined centers to the known centers and evaluate each method against the simulated conditions. We find that in most cases center of light performs the worst, while Gaussian fitting and least asymmetry are alternately better under different circumstances. Using a real point response function with "reasonable signal-to-noise," we find that least asymmetry provides the most accurate center estimates, and Gaussian centering is the most precise. The least asymmetry routine implemented in the Python Programming Language can be found at https://github.com/natelust/least_asymmetry.
doi_str_mv 10.1086/679470
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1765979212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/679470</jstor_id><sourcerecordid>10.1086/679470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-b75c16f2f1feec08db5c3a2c5862c7698429584b9dff6ccef06dad6163febd763</originalsourceid><addsrcrecordid>eNp10M1KxDAUBeAgCo6jPkNREDfVm6RN0qUU_2DEja5Dmtxoh2lTk8xi3t6RuhJcnc3HgXMIOadwQ0GJWyGbSsIBWdCaq5IryQ_JAgCqUjAFx-QkpTUApYrCgsAKTcrFXdoNA-a4K1ocM8Z-_CheMH8GV5jRFW0YJhP7FMZ0So682SQ8-80leX-4f2ufytXr43N7tyotr3guO1lbKjzz1CNaUK6rLTfM1kowK0WjKtbUquoa572wFj0IZ5yggnvsnBR8Sa7n3imGry2mrIc-WdxszIhhmzSVom5kwyjb06uZ2hhSiuj1FPvBxJ2moH8u0fMle3g5w3XKIf6vLmbVh0mvwzaO-51_0TfMymgm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765979212</pqid></control><display><type>article</type><title>Least Asymmetry Centering Method and Comparisons</title><source>JSTOR Archive Collection A-Z Listing</source><source>Institute of Physics Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lust, Nate B. ; Britt, Daniel ; Harrington, Joseph ; Nymeyer, Sarah ; Stevenson, Kevin B. ; Ross, Emily L. ; Bowman, William ; Fraine, Jonathan</creator><creatorcontrib>Lust, Nate B. ; Britt, Daniel ; Harrington, Joseph ; Nymeyer, Sarah ; Stevenson, Kevin B. ; Ross, Emily L. ; Bowman, William ; Fraine, Jonathan</creatorcontrib><description>The interpretation of astronomical photometry, astrometry, and orbit determination data depends on accurately and consistently identifying the center of the target object's photometric point spread function in the presence of noise. We introduce a new technique, called least asymmetry, which is designed to find the point about which the distribution is most symmetric. This technique, in addition to the commonly used techniques Gaussian fitting and center of light, was tested against synthetic datasets under realistic ranges of noise and photometric gain. With subpixel accuracy, we compare the determined centers to the known centers and evaluate each method against the simulated conditions. We find that in most cases center of light performs the worst, while Gaussian fitting and least asymmetry are alternately better under different circumstances. Using a real point response function with "reasonable signal-to-noise," we find that least asymmetry provides the most accurate center estimates, and Gaussian centering is the most precise. The least asymmetry routine implemented in the Python Programming Language can be found at https://github.com/natelust/least_asymmetry.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><identifier>DOI: 10.1086/679470</identifier><language>eng</language><publisher>University of Chicago Press</publisher><subject>Astronomical photometry ; Datasets ; Distribution functions ; Mathematical functions ; Pixels ; Signal detection ; Signal noise ; Statistical discrepancies ; Statistical variance</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2014-12, Vol.126 (946), p.1092-1101</ispartof><rights>2014. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-b75c16f2f1feec08db5c3a2c5862c7698429584b9dff6ccef06dad6163febd763</citedby><cites>FETCH-LOGICAL-c343t-b75c16f2f1feec08db5c3a2c5862c7698429584b9dff6ccef06dad6163febd763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1086/679470/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,803,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Lust, Nate B.</creatorcontrib><creatorcontrib>Britt, Daniel</creatorcontrib><creatorcontrib>Harrington, Joseph</creatorcontrib><creatorcontrib>Nymeyer, Sarah</creatorcontrib><creatorcontrib>Stevenson, Kevin B.</creatorcontrib><creatorcontrib>Ross, Emily L.</creatorcontrib><creatorcontrib>Bowman, William</creatorcontrib><creatorcontrib>Fraine, Jonathan</creatorcontrib><title>Least Asymmetry Centering Method and Comparisons</title><title>Publications of the Astronomical Society of the Pacific</title><description>The interpretation of astronomical photometry, astrometry, and orbit determination data depends on accurately and consistently identifying the center of the target object's photometric point spread function in the presence of noise. We introduce a new technique, called least asymmetry, which is designed to find the point about which the distribution is most symmetric. This technique, in addition to the commonly used techniques Gaussian fitting and center of light, was tested against synthetic datasets under realistic ranges of noise and photometric gain. With subpixel accuracy, we compare the determined centers to the known centers and evaluate each method against the simulated conditions. We find that in most cases center of light performs the worst, while Gaussian fitting and least asymmetry are alternately better under different circumstances. Using a real point response function with "reasonable signal-to-noise," we find that least asymmetry provides the most accurate center estimates, and Gaussian centering is the most precise. The least asymmetry routine implemented in the Python Programming Language can be found at https://github.com/natelust/least_asymmetry.</description><subject>Astronomical photometry</subject><subject>Datasets</subject><subject>Distribution functions</subject><subject>Mathematical functions</subject><subject>Pixels</subject><subject>Signal detection</subject><subject>Signal noise</subject><subject>Statistical discrepancies</subject><subject>Statistical variance</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAUBeAgCo6jPkNREDfVm6RN0qUU_2DEja5Dmtxoh2lTk8xi3t6RuhJcnc3HgXMIOadwQ0GJWyGbSsIBWdCaq5IryQ_JAgCqUjAFx-QkpTUApYrCgsAKTcrFXdoNA-a4K1ocM8Z-_CheMH8GV5jRFW0YJhP7FMZ0So682SQ8-80leX-4f2ufytXr43N7tyotr3guO1lbKjzz1CNaUK6rLTfM1kowK0WjKtbUquoa572wFj0IZ5yggnvsnBR8Sa7n3imGry2mrIc-WdxszIhhmzSVom5kwyjb06uZ2hhSiuj1FPvBxJ2moH8u0fMle3g5w3XKIf6vLmbVh0mvwzaO-51_0TfMymgm</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Lust, Nate B.</creator><creator>Britt, Daniel</creator><creator>Harrington, Joseph</creator><creator>Nymeyer, Sarah</creator><creator>Stevenson, Kevin B.</creator><creator>Ross, Emily L.</creator><creator>Bowman, William</creator><creator>Fraine, Jonathan</creator><general>University of Chicago Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20141201</creationdate><title>Least Asymmetry Centering Method and Comparisons</title><author>Lust, Nate B. ; Britt, Daniel ; Harrington, Joseph ; Nymeyer, Sarah ; Stevenson, Kevin B. ; Ross, Emily L. ; Bowman, William ; Fraine, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-b75c16f2f1feec08db5c3a2c5862c7698429584b9dff6ccef06dad6163febd763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Astronomical photometry</topic><topic>Datasets</topic><topic>Distribution functions</topic><topic>Mathematical functions</topic><topic>Pixels</topic><topic>Signal detection</topic><topic>Signal noise</topic><topic>Statistical discrepancies</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lust, Nate B.</creatorcontrib><creatorcontrib>Britt, Daniel</creatorcontrib><creatorcontrib>Harrington, Joseph</creatorcontrib><creatorcontrib>Nymeyer, Sarah</creatorcontrib><creatorcontrib>Stevenson, Kevin B.</creatorcontrib><creatorcontrib>Ross, Emily L.</creatorcontrib><creatorcontrib>Bowman, William</creatorcontrib><creatorcontrib>Fraine, Jonathan</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lust, Nate B.</au><au>Britt, Daniel</au><au>Harrington, Joseph</au><au>Nymeyer, Sarah</au><au>Stevenson, Kevin B.</au><au>Ross, Emily L.</au><au>Bowman, William</au><au>Fraine, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Least Asymmetry Centering Method and Comparisons</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>126</volume><issue>946</issue><spage>1092</spage><epage>1101</epage><pages>1092-1101</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><abstract>The interpretation of astronomical photometry, astrometry, and orbit determination data depends on accurately and consistently identifying the center of the target object's photometric point spread function in the presence of noise. We introduce a new technique, called least asymmetry, which is designed to find the point about which the distribution is most symmetric. This technique, in addition to the commonly used techniques Gaussian fitting and center of light, was tested against synthetic datasets under realistic ranges of noise and photometric gain. With subpixel accuracy, we compare the determined centers to the known centers and evaluate each method against the simulated conditions. We find that in most cases center of light performs the worst, while Gaussian fitting and least asymmetry are alternately better under different circumstances. Using a real point response function with "reasonable signal-to-noise," we find that least asymmetry provides the most accurate center estimates, and Gaussian centering is the most precise. The least asymmetry routine implemented in the Python Programming Language can be found at https://github.com/natelust/least_asymmetry.</abstract><pub>University of Chicago Press</pub><doi>10.1086/679470</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6280
ispartof Publications of the Astronomical Society of the Pacific, 2014-12, Vol.126 (946), p.1092-1101
issn 0004-6280
1538-3873
language eng
recordid cdi_proquest_miscellaneous_1765979212
source JSTOR Archive Collection A-Z Listing; Institute of Physics Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Astronomical photometry
Datasets
Distribution functions
Mathematical functions
Pixels
Signal detection
Signal noise
Statistical discrepancies
Statistical variance
title Least Asymmetry Centering Method and Comparisons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Least%20Asymmetry%20Centering%20Method%20and%20Comparisons&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Lust,%20Nate%20B.&rft.date=2014-12-01&rft.volume=126&rft.issue=946&rft.spage=1092&rft.epage=1101&rft.pages=1092-1101&rft.issn=0004-6280&rft.eissn=1538-3873&rft_id=info:doi/10.1086/679470&rft_dat=%3Cjstor_proqu%3E10.1086/679470%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765979212&rft_id=info:pmid/&rft_jstor_id=10.1086/679470&rfr_iscdi=true