Least Asymmetry Centering Method and Comparisons
The interpretation of astronomical photometry, astrometry, and orbit determination data depends on accurately and consistently identifying the center of the target object's photometric point spread function in the presence of noise. We introduce a new technique, called least asymmetry, which is...
Gespeichert in:
Veröffentlicht in: | Publications of the Astronomical Society of the Pacific 2014-12, Vol.126 (946), p.1092-1101 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1101 |
---|---|
container_issue | 946 |
container_start_page | 1092 |
container_title | Publications of the Astronomical Society of the Pacific |
container_volume | 126 |
creator | Lust, Nate B. Britt, Daniel Harrington, Joseph Nymeyer, Sarah Stevenson, Kevin B. Ross, Emily L. Bowman, William Fraine, Jonathan |
description | The interpretation of astronomical photometry, astrometry, and orbit determination data depends on accurately and consistently identifying the center of the target object's photometric point spread function in the presence of noise. We introduce a new technique, called least asymmetry, which is designed to find the point about which the distribution is most symmetric. This technique, in addition to the commonly used techniques Gaussian fitting and center of light, was tested against synthetic datasets under realistic ranges of noise and photometric gain. With subpixel accuracy, we compare the determined centers to the known centers and evaluate each method against the simulated conditions. We find that in most cases center of light performs the worst, while Gaussian fitting and least asymmetry are alternately better under different circumstances. Using a real point response function with "reasonable signal-to-noise," we find that least asymmetry provides the most accurate center estimates, and Gaussian centering is the most precise. The least asymmetry routine implemented in the Python Programming Language can be found at https://github.com/natelust/least_asymmetry. |
doi_str_mv | 10.1086/679470 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1765979212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/679470</jstor_id><sourcerecordid>10.1086/679470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-b75c16f2f1feec08db5c3a2c5862c7698429584b9dff6ccef06dad6163febd763</originalsourceid><addsrcrecordid>eNp10M1KxDAUBeAgCo6jPkNREDfVm6RN0qUU_2DEja5Dmtxoh2lTk8xi3t6RuhJcnc3HgXMIOadwQ0GJWyGbSsIBWdCaq5IryQ_JAgCqUjAFx-QkpTUApYrCgsAKTcrFXdoNA-a4K1ocM8Z-_CheMH8GV5jRFW0YJhP7FMZ0So682SQ8-80leX-4f2ufytXr43N7tyotr3guO1lbKjzz1CNaUK6rLTfM1kowK0WjKtbUquoa572wFj0IZ5yggnvsnBR8Sa7n3imGry2mrIc-WdxszIhhmzSVom5kwyjb06uZ2hhSiuj1FPvBxJ2moH8u0fMle3g5w3XKIf6vLmbVh0mvwzaO-51_0TfMymgm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765979212</pqid></control><display><type>article</type><title>Least Asymmetry Centering Method and Comparisons</title><source>JSTOR Archive Collection A-Z Listing</source><source>Institute of Physics Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lust, Nate B. ; Britt, Daniel ; Harrington, Joseph ; Nymeyer, Sarah ; Stevenson, Kevin B. ; Ross, Emily L. ; Bowman, William ; Fraine, Jonathan</creator><creatorcontrib>Lust, Nate B. ; Britt, Daniel ; Harrington, Joseph ; Nymeyer, Sarah ; Stevenson, Kevin B. ; Ross, Emily L. ; Bowman, William ; Fraine, Jonathan</creatorcontrib><description>The interpretation of astronomical photometry, astrometry, and orbit determination data depends on accurately and consistently identifying the center of the target object's photometric point spread function in the presence of noise. We introduce a new technique, called least asymmetry, which is designed to find the point about which the distribution is most symmetric. This technique, in addition to the commonly used techniques Gaussian fitting and center of light, was tested against synthetic datasets under realistic ranges of noise and photometric gain. With subpixel accuracy, we compare the determined centers to the known centers and evaluate each method against the simulated conditions. We find that in most cases center of light performs the worst, while Gaussian fitting and least asymmetry are alternately better under different circumstances. Using a real point response function with "reasonable signal-to-noise," we find that least asymmetry provides the most accurate center estimates, and Gaussian centering is the most precise. The least asymmetry routine implemented in the Python Programming Language can be found at https://github.com/natelust/least_asymmetry.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><identifier>DOI: 10.1086/679470</identifier><language>eng</language><publisher>University of Chicago Press</publisher><subject>Astronomical photometry ; Datasets ; Distribution functions ; Mathematical functions ; Pixels ; Signal detection ; Signal noise ; Statistical discrepancies ; Statistical variance</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2014-12, Vol.126 (946), p.1092-1101</ispartof><rights>2014. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-b75c16f2f1feec08db5c3a2c5862c7698429584b9dff6ccef06dad6163febd763</citedby><cites>FETCH-LOGICAL-c343t-b75c16f2f1feec08db5c3a2c5862c7698429584b9dff6ccef06dad6163febd763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1086/679470/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,803,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Lust, Nate B.</creatorcontrib><creatorcontrib>Britt, Daniel</creatorcontrib><creatorcontrib>Harrington, Joseph</creatorcontrib><creatorcontrib>Nymeyer, Sarah</creatorcontrib><creatorcontrib>Stevenson, Kevin B.</creatorcontrib><creatorcontrib>Ross, Emily L.</creatorcontrib><creatorcontrib>Bowman, William</creatorcontrib><creatorcontrib>Fraine, Jonathan</creatorcontrib><title>Least Asymmetry Centering Method and Comparisons</title><title>Publications of the Astronomical Society of the Pacific</title><description>The interpretation of astronomical photometry, astrometry, and orbit determination data depends on accurately and consistently identifying the center of the target object's photometric point spread function in the presence of noise. We introduce a new technique, called least asymmetry, which is designed to find the point about which the distribution is most symmetric. This technique, in addition to the commonly used techniques Gaussian fitting and center of light, was tested against synthetic datasets under realistic ranges of noise and photometric gain. With subpixel accuracy, we compare the determined centers to the known centers and evaluate each method against the simulated conditions. We find that in most cases center of light performs the worst, while Gaussian fitting and least asymmetry are alternately better under different circumstances. Using a real point response function with "reasonable signal-to-noise," we find that least asymmetry provides the most accurate center estimates, and Gaussian centering is the most precise. The least asymmetry routine implemented in the Python Programming Language can be found at https://github.com/natelust/least_asymmetry.</description><subject>Astronomical photometry</subject><subject>Datasets</subject><subject>Distribution functions</subject><subject>Mathematical functions</subject><subject>Pixels</subject><subject>Signal detection</subject><subject>Signal noise</subject><subject>Statistical discrepancies</subject><subject>Statistical variance</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAUBeAgCo6jPkNREDfVm6RN0qUU_2DEja5Dmtxoh2lTk8xi3t6RuhJcnc3HgXMIOadwQ0GJWyGbSsIBWdCaq5IryQ_JAgCqUjAFx-QkpTUApYrCgsAKTcrFXdoNA-a4K1ocM8Z-_CheMH8GV5jRFW0YJhP7FMZ0So682SQ8-80leX-4f2ufytXr43N7tyotr3guO1lbKjzz1CNaUK6rLTfM1kowK0WjKtbUquoa572wFj0IZ5yggnvsnBR8Sa7n3imGry2mrIc-WdxszIhhmzSVom5kwyjb06uZ2hhSiuj1FPvBxJ2moH8u0fMle3g5w3XKIf6vLmbVh0mvwzaO-51_0TfMymgm</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Lust, Nate B.</creator><creator>Britt, Daniel</creator><creator>Harrington, Joseph</creator><creator>Nymeyer, Sarah</creator><creator>Stevenson, Kevin B.</creator><creator>Ross, Emily L.</creator><creator>Bowman, William</creator><creator>Fraine, Jonathan</creator><general>University of Chicago Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20141201</creationdate><title>Least Asymmetry Centering Method and Comparisons</title><author>Lust, Nate B. ; Britt, Daniel ; Harrington, Joseph ; Nymeyer, Sarah ; Stevenson, Kevin B. ; Ross, Emily L. ; Bowman, William ; Fraine, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-b75c16f2f1feec08db5c3a2c5862c7698429584b9dff6ccef06dad6163febd763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Astronomical photometry</topic><topic>Datasets</topic><topic>Distribution functions</topic><topic>Mathematical functions</topic><topic>Pixels</topic><topic>Signal detection</topic><topic>Signal noise</topic><topic>Statistical discrepancies</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lust, Nate B.</creatorcontrib><creatorcontrib>Britt, Daniel</creatorcontrib><creatorcontrib>Harrington, Joseph</creatorcontrib><creatorcontrib>Nymeyer, Sarah</creatorcontrib><creatorcontrib>Stevenson, Kevin B.</creatorcontrib><creatorcontrib>Ross, Emily L.</creatorcontrib><creatorcontrib>Bowman, William</creatorcontrib><creatorcontrib>Fraine, Jonathan</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lust, Nate B.</au><au>Britt, Daniel</au><au>Harrington, Joseph</au><au>Nymeyer, Sarah</au><au>Stevenson, Kevin B.</au><au>Ross, Emily L.</au><au>Bowman, William</au><au>Fraine, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Least Asymmetry Centering Method and Comparisons</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>126</volume><issue>946</issue><spage>1092</spage><epage>1101</epage><pages>1092-1101</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><abstract>The interpretation of astronomical photometry, astrometry, and orbit determination data depends on accurately and consistently identifying the center of the target object's photometric point spread function in the presence of noise. We introduce a new technique, called least asymmetry, which is designed to find the point about which the distribution is most symmetric. This technique, in addition to the commonly used techniques Gaussian fitting and center of light, was tested against synthetic datasets under realistic ranges of noise and photometric gain. With subpixel accuracy, we compare the determined centers to the known centers and evaluate each method against the simulated conditions. We find that in most cases center of light performs the worst, while Gaussian fitting and least asymmetry are alternately better under different circumstances. Using a real point response function with "reasonable signal-to-noise," we find that least asymmetry provides the most accurate center estimates, and Gaussian centering is the most precise. The least asymmetry routine implemented in the Python Programming Language can be found at https://github.com/natelust/least_asymmetry.</abstract><pub>University of Chicago Press</pub><doi>10.1086/679470</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6280 |
ispartof | Publications of the Astronomical Society of the Pacific, 2014-12, Vol.126 (946), p.1092-1101 |
issn | 0004-6280 1538-3873 |
language | eng |
recordid | cdi_proquest_miscellaneous_1765979212 |
source | JSTOR Archive Collection A-Z Listing; Institute of Physics Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Astronomical photometry Datasets Distribution functions Mathematical functions Pixels Signal detection Signal noise Statistical discrepancies Statistical variance |
title | Least Asymmetry Centering Method and Comparisons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Least%20Asymmetry%20Centering%20Method%20and%20Comparisons&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Lust,%20Nate%20B.&rft.date=2014-12-01&rft.volume=126&rft.issue=946&rft.spage=1092&rft.epage=1101&rft.pages=1092-1101&rft.issn=0004-6280&rft.eissn=1538-3873&rft_id=info:doi/10.1086/679470&rft_dat=%3Cjstor_proqu%3E10.1086/679470%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765979212&rft_id=info:pmid/&rft_jstor_id=10.1086/679470&rfr_iscdi=true |