Study of gaseous velocity slip in nano-channel using molecular dynamics simulation
Purpose – The purpose of this paper is to investigate the gas flow characteristics in near wall region and the velocity slip phenomenon on the wall in nano-channels based on the molecular dynamics simulation. Design/methodology/approach – An external gravity force was employed to drive the flow. The...
Gespeichert in:
Veröffentlicht in: | International journal of numerical methods for heat & fluid flow 2014-07, Vol.24 (6), p.1338-1347 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1347 |
---|---|
container_issue | 6 |
container_start_page | 1338 |
container_title | International journal of numerical methods for heat & fluid flow |
container_volume | 24 |
creator | Bao, Fubing Mao, Zhihong Qiu, Limin |
description | Purpose
– The purpose of this paper is to investigate the gas flow characteristics in near wall region and the velocity slip phenomenon on the wall in nano-channels based on the molecular dynamics simulation.
Design/methodology/approach
– An external gravity force was employed to drive the flow. The density and velocity profiles across the channel, and the velocity slip on the wall were studied, considering different gas temperatures and gas-solid interaction strengths.
Findings
– The simulation results demonstrate that a single layer of gas molecules is adsorbed on wall surface. The density of adsorption layer increases with the decrease of gas temperature and with increase of interaction strength. The near wall region extents several molecular diameters away from the wall. The density profile is flatter at higher temperature and the velocity profile has the traditional parabolic shape. The velocity slip on the wall increases with the increase of temperature and with decrease of interaction strength linearly. The average velocity decreases with the increase of gas-solid interaction strength.
Originality/value
– This research presents gas flow characteristics in near wall region and the velocity slip phenomenon on the wall in nano-channels. Some interesting results in nano-scale channels are obtained. |
doi_str_mv | 10.1108/HFF-04-2013-0145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1765972835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1765972835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-32e8756e06cdea7729e6dbafee529168a89414d72288f6b2c23c80c292c356b93</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoWKt7lwE3bqJ5TF5LKdYKBcHHOqSZTE3JJHUyI_TfO6VuFBeuLly-c-DwAXBJ8A0hWN0u5nOEK0QxYQiTih-BCZFcIcEVPwYTrAVBnDN9Cs5K2WCMuajEBDy_9EO9g7mBa1t8Hgr89DG70O9giWELQ4LJpozcu03JRziUkNawzdG7IdoO1rtk2-AKLKEdH33I6RycNDYWf_F9p-Btfv86W6Dl08Pj7G6JHJOyR4x6JbnwWLjaWymp9qJe2cZ7TjURyipdkaqWlCrViBV1lDmFHdXUMS5Wmk3B9aF32-WPwZfetKE4H6NN-yGGSMG1pIrxf6BYSyEEqUb06he6yUOXxiGGEkIllZKokcIHynW5lM43ZtuF1nY7Q7DZ-zCjD4Mrs_dh9j7GyO0h4lvf2Vj_lfhhkH0BuU-Kqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112727718</pqid></control><display><type>article</type><title>Study of gaseous velocity slip in nano-channel using molecular dynamics simulation</title><source>Emerald Journals</source><creator>Bao, Fubing ; Mao, Zhihong ; Qiu, Limin</creator><creatorcontrib>Bao, Fubing ; Mao, Zhihong ; Qiu, Limin</creatorcontrib><description>Purpose
– The purpose of this paper is to investigate the gas flow characteristics in near wall region and the velocity slip phenomenon on the wall in nano-channels based on the molecular dynamics simulation.
Design/methodology/approach
– An external gravity force was employed to drive the flow. The density and velocity profiles across the channel, and the velocity slip on the wall were studied, considering different gas temperatures and gas-solid interaction strengths.
Findings
– The simulation results demonstrate that a single layer of gas molecules is adsorbed on wall surface. The density of adsorption layer increases with the decrease of gas temperature and with increase of interaction strength. The near wall region extents several molecular diameters away from the wall. The density profile is flatter at higher temperature and the velocity profile has the traditional parabolic shape. The velocity slip on the wall increases with the increase of temperature and with decrease of interaction strength linearly. The average velocity decreases with the increase of gas-solid interaction strength.
Originality/value
– This research presents gas flow characteristics in near wall region and the velocity slip phenomenon on the wall in nano-channels. Some interesting results in nano-scale channels are obtained.</description><identifier>ISSN: 0961-5539</identifier><identifier>EISSN: 1758-6585</identifier><identifier>DOI: 10.1108/HFF-04-2013-0145</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Adsorption ; Average velocity ; Channels ; Computer simulation ; Density ; Density profiles ; Dynamics ; Engineering ; Flow characteristics ; Flow control ; Flow velocity ; Gas flow ; Gas temperature ; Gas-solid interactions ; Gravity ; High temperature ; Investigations ; Mechanical engineering ; Molecular dynamics ; Nanochannels ; Nanostructure ; Simulation ; Slip ; Strength ; Temperature ; Velocity ; Velocity distribution ; Velocity profiles ; Walls</subject><ispartof>International journal of numerical methods for heat & fluid flow, 2014-07, Vol.24 (6), p.1338-1347</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Emerald Group Publishing Limited 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-32e8756e06cdea7729e6dbafee529168a89414d72288f6b2c23c80c292c356b93</citedby><cites>FETCH-LOGICAL-c377t-32e8756e06cdea7729e6dbafee529168a89414d72288f6b2c23c80c292c356b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/HFF-04-2013-0145/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/HFF-04-2013-0145/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,961,11614,27901,27902,52661,52664</link.rule.ids></links><search><creatorcontrib>Bao, Fubing</creatorcontrib><creatorcontrib>Mao, Zhihong</creatorcontrib><creatorcontrib>Qiu, Limin</creatorcontrib><title>Study of gaseous velocity slip in nano-channel using molecular dynamics simulation</title><title>International journal of numerical methods for heat & fluid flow</title><description>Purpose
– The purpose of this paper is to investigate the gas flow characteristics in near wall region and the velocity slip phenomenon on the wall in nano-channels based on the molecular dynamics simulation.
Design/methodology/approach
– An external gravity force was employed to drive the flow. The density and velocity profiles across the channel, and the velocity slip on the wall were studied, considering different gas temperatures and gas-solid interaction strengths.
Findings
– The simulation results demonstrate that a single layer of gas molecules is adsorbed on wall surface. The density of adsorption layer increases with the decrease of gas temperature and with increase of interaction strength. The near wall region extents several molecular diameters away from the wall. The density profile is flatter at higher temperature and the velocity profile has the traditional parabolic shape. The velocity slip on the wall increases with the increase of temperature and with decrease of interaction strength linearly. The average velocity decreases with the increase of gas-solid interaction strength.
Originality/value
– This research presents gas flow characteristics in near wall region and the velocity slip phenomenon on the wall in nano-channels. Some interesting results in nano-scale channels are obtained.</description><subject>Adsorption</subject><subject>Average velocity</subject><subject>Channels</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Density profiles</subject><subject>Dynamics</subject><subject>Engineering</subject><subject>Flow characteristics</subject><subject>Flow control</subject><subject>Flow velocity</subject><subject>Gas flow</subject><subject>Gas temperature</subject><subject>Gas-solid interactions</subject><subject>Gravity</subject><subject>High temperature</subject><subject>Investigations</subject><subject>Mechanical engineering</subject><subject>Molecular dynamics</subject><subject>Nanochannels</subject><subject>Nanostructure</subject><subject>Simulation</subject><subject>Slip</subject><subject>Strength</subject><subject>Temperature</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Velocity profiles</subject><subject>Walls</subject><issn>0961-5539</issn><issn>1758-6585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkUtLAzEUhYMoWKt7lwE3bqJ5TF5LKdYKBcHHOqSZTE3JJHUyI_TfO6VuFBeuLly-c-DwAXBJ8A0hWN0u5nOEK0QxYQiTih-BCZFcIcEVPwYTrAVBnDN9Cs5K2WCMuajEBDy_9EO9g7mBa1t8Hgr89DG70O9giWELQ4LJpozcu03JRziUkNawzdG7IdoO1rtk2-AKLKEdH33I6RycNDYWf_F9p-Btfv86W6Dl08Pj7G6JHJOyR4x6JbnwWLjaWymp9qJe2cZ7TjURyipdkaqWlCrViBV1lDmFHdXUMS5Wmk3B9aF32-WPwZfetKE4H6NN-yGGSMG1pIrxf6BYSyEEqUb06he6yUOXxiGGEkIllZKokcIHynW5lM43ZtuF1nY7Q7DZ-zCjD4Mrs_dh9j7GyO0h4lvf2Vj_lfhhkH0BuU-Kqw</recordid><startdate>20140729</startdate><enddate>20140729</enddate><creator>Bao, Fubing</creator><creator>Mao, Zhihong</creator><creator>Qiu, Limin</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20140729</creationdate><title>Study of gaseous velocity slip in nano-channel using molecular dynamics simulation</title><author>Bao, Fubing ; Mao, Zhihong ; Qiu, Limin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-32e8756e06cdea7729e6dbafee529168a89414d72288f6b2c23c80c292c356b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adsorption</topic><topic>Average velocity</topic><topic>Channels</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Density profiles</topic><topic>Dynamics</topic><topic>Engineering</topic><topic>Flow characteristics</topic><topic>Flow control</topic><topic>Flow velocity</topic><topic>Gas flow</topic><topic>Gas temperature</topic><topic>Gas-solid interactions</topic><topic>Gravity</topic><topic>High temperature</topic><topic>Investigations</topic><topic>Mechanical engineering</topic><topic>Molecular dynamics</topic><topic>Nanochannels</topic><topic>Nanostructure</topic><topic>Simulation</topic><topic>Slip</topic><topic>Strength</topic><topic>Temperature</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Velocity profiles</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Fubing</creatorcontrib><creatorcontrib>Mao, Zhihong</creatorcontrib><creatorcontrib>Qiu, Limin</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of numerical methods for heat & fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Fubing</au><au>Mao, Zhihong</au><au>Qiu, Limin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of gaseous velocity slip in nano-channel using molecular dynamics simulation</atitle><jtitle>International journal of numerical methods for heat & fluid flow</jtitle><date>2014-07-29</date><risdate>2014</risdate><volume>24</volume><issue>6</issue><spage>1338</spage><epage>1347</epage><pages>1338-1347</pages><issn>0961-5539</issn><eissn>1758-6585</eissn><abstract>Purpose
– The purpose of this paper is to investigate the gas flow characteristics in near wall region and the velocity slip phenomenon on the wall in nano-channels based on the molecular dynamics simulation.
Design/methodology/approach
– An external gravity force was employed to drive the flow. The density and velocity profiles across the channel, and the velocity slip on the wall were studied, considering different gas temperatures and gas-solid interaction strengths.
Findings
– The simulation results demonstrate that a single layer of gas molecules is adsorbed on wall surface. The density of adsorption layer increases with the decrease of gas temperature and with increase of interaction strength. The near wall region extents several molecular diameters away from the wall. The density profile is flatter at higher temperature and the velocity profile has the traditional parabolic shape. The velocity slip on the wall increases with the increase of temperature and with decrease of interaction strength linearly. The average velocity decreases with the increase of gas-solid interaction strength.
Originality/value
– This research presents gas flow characteristics in near wall region and the velocity slip phenomenon on the wall in nano-channels. Some interesting results in nano-scale channels are obtained.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/HFF-04-2013-0145</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-5539 |
ispartof | International journal of numerical methods for heat & fluid flow, 2014-07, Vol.24 (6), p.1338-1347 |
issn | 0961-5539 1758-6585 |
language | eng |
recordid | cdi_proquest_miscellaneous_1765972835 |
source | Emerald Journals |
subjects | Adsorption Average velocity Channels Computer simulation Density Density profiles Dynamics Engineering Flow characteristics Flow control Flow velocity Gas flow Gas temperature Gas-solid interactions Gravity High temperature Investigations Mechanical engineering Molecular dynamics Nanochannels Nanostructure Simulation Slip Strength Temperature Velocity Velocity distribution Velocity profiles Walls |
title | Study of gaseous velocity slip in nano-channel using molecular dynamics simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20gaseous%20velocity%20slip%20in%20nano-channel%20using%20molecular%20dynamics%20simulation&rft.jtitle=International%20journal%20of%20numerical%20methods%20for%20heat%20&%20fluid%20flow&rft.au=Bao,%20Fubing&rft.date=2014-07-29&rft.volume=24&rft.issue=6&rft.spage=1338&rft.epage=1347&rft.pages=1338-1347&rft.issn=0961-5539&rft.eissn=1758-6585&rft_id=info:doi/10.1108/HFF-04-2013-0145&rft_dat=%3Cproquest_cross%3E1765972835%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112727718&rft_id=info:pmid/&rfr_iscdi=true |