Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method
A double-population Lattice Boltzmann Method (LBM) is applied to solve the steady-state laminar natural convective heat-transfer problem in a triangular cavity filled with air (Pr = 0.71). Two different boundary conditions are implemented for the vertical and inclined boundaries: Case I) adiabatic v...
Gespeichert in:
Veröffentlicht in: | Fluid dynamics & materials processing 2013-01, Vol.9 (4), p.353-388 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 4 |
container_start_page | 353 |
container_title | Fluid dynamics & materials processing |
container_volume | 9 |
creator | Mahmoudi, Ahmed Mejri, Imen Abbassi, Mohamed Ammar Omri, Ahmed |
description | A double-population Lattice Boltzmann Method (LBM) is applied to solve the steady-state laminar natural convective heat-transfer problem in a triangular cavity filled with air (Pr = 0.71). Two different boundary conditions are implemented for the vertical and inclined boundaries: Case I) adiabatic vertical wall and inclined isothermal wall, Case II) isothermal vertical wall and adiabatic inclined wall. The bottom wall is assumed to be at a constant temperature (isothermal) for both cases. The buoyancy effect is modeled in the framework of the well-known Boussinesq approximation. The velocity and temperature fields are determined by a D2Q9 LBM and a D2Q4 LBM, respectively. Comparison with previously published work shows excellent agreement. Numerical results are obtained for a wide range of parameters: the Rayleigh number spanning the range(10 super(3) -10 super(6)) and the inclination angle varying in the intervals (0[degrees] to 120[degrees]) and (0[degrees] to 360[degrees]) for cases I and II, respectively. Flow and thermal fields are given in terms of streamlines and isotherms distributions. It is observed that inclination angle can be used as a relevant parameter to control heat transfer in right-angled triangular enclosures. |
doi_str_mv | 10.3970/fdmp.2013.009.353 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1765967857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1765967857</sourcerecordid><originalsourceid>FETCH-LOGICAL-p249t-275c7963b2073760151450f5f83bff3e2f87613c31d0fc10d739f56cee8758f63</originalsourceid><addsrcrecordid>eNqNkb1OwzAURiMEEqXwAGyWWFga7Di2Y7YS_iqVMlAktsp1bOoqsYNjVyrvwruSAmJgYrpXV0fn09WXJKcIppgzeKGrpk0ziHAKIU8xwXvJABFCRhlhxf7vTl8Ok6OuW0OIGSf5IPmYxUZ5I0UNnkKstsBpMBMh-v5QOrtRMhhngbFAWDCxsjZWVWDujbCvsRYelGJjwhZo58G10Vp5ZQOYr5RvesOVi7YSfrtTVWZn6i7BuG3rPvDL26eFlQJTEYKRqufr8N4Ia8GDCitXHScHWtSdOvmZw-T59mZe3o-mj3eTcjwdtVnOwyhjRDJO8TKDDDMKEUE5gZroAi-1xirTBaMIS4wqqCWCFcNcEyqVKhgpNMXD5Pzb23r3FlUXFo3ppKprYZWL3QIxSjhlBWH_QTMEc5rjHj37g65d9LZ_ZJH1pSGGOIf4EybfiUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397171990</pqid></control><display><type>article</type><title>Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mahmoudi, Ahmed ; Mejri, Imen ; Abbassi, Mohamed Ammar ; Omri, Ahmed</creator><creatorcontrib>Mahmoudi, Ahmed ; Mejri, Imen ; Abbassi, Mohamed Ammar ; Omri, Ahmed</creatorcontrib><description>A double-population Lattice Boltzmann Method (LBM) is applied to solve the steady-state laminar natural convective heat-transfer problem in a triangular cavity filled with air (Pr = 0.71). Two different boundary conditions are implemented for the vertical and inclined boundaries: Case I) adiabatic vertical wall and inclined isothermal wall, Case II) isothermal vertical wall and adiabatic inclined wall. The bottom wall is assumed to be at a constant temperature (isothermal) for both cases. The buoyancy effect is modeled in the framework of the well-known Boussinesq approximation. The velocity and temperature fields are determined by a D2Q9 LBM and a D2Q4 LBM, respectively. Comparison with previously published work shows excellent agreement. Numerical results are obtained for a wide range of parameters: the Rayleigh number spanning the range(10 super(3) -10 super(6)) and the inclination angle varying in the intervals (0[degrees] to 120[degrees]) and (0[degrees] to 360[degrees]) for cases I and II, respectively. Flow and thermal fields are given in terms of streamlines and isotherms distributions. It is observed that inclination angle can be used as a relevant parameter to control heat transfer in right-angled triangular enclosures.</description><identifier>ISSN: 1555-256X</identifier><identifier>EISSN: 1555-2578</identifier><identifier>DOI: 10.3970/fdmp.2013.009.353</identifier><language>eng</language><publisher>Duluth: Tech Science Press</publisher><subject>Adiabatic flow ; Boundary conditions ; Boussinesq approximation ; Computational fluid dynamics ; Free convection ; Heat transfer ; Holes ; Inclination angle ; Mathematical models ; Parameters ; Walls</subject><ispartof>Fluid dynamics & materials processing, 2013-01, Vol.9 (4), p.353-388</ispartof><rights>2013. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mahmoudi, Ahmed</creatorcontrib><creatorcontrib>Mejri, Imen</creatorcontrib><creatorcontrib>Abbassi, Mohamed Ammar</creatorcontrib><creatorcontrib>Omri, Ahmed</creatorcontrib><title>Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method</title><title>Fluid dynamics & materials processing</title><description>A double-population Lattice Boltzmann Method (LBM) is applied to solve the steady-state laminar natural convective heat-transfer problem in a triangular cavity filled with air (Pr = 0.71). Two different boundary conditions are implemented for the vertical and inclined boundaries: Case I) adiabatic vertical wall and inclined isothermal wall, Case II) isothermal vertical wall and adiabatic inclined wall. The bottom wall is assumed to be at a constant temperature (isothermal) for both cases. The buoyancy effect is modeled in the framework of the well-known Boussinesq approximation. The velocity and temperature fields are determined by a D2Q9 LBM and a D2Q4 LBM, respectively. Comparison with previously published work shows excellent agreement. Numerical results are obtained for a wide range of parameters: the Rayleigh number spanning the range(10 super(3) -10 super(6)) and the inclination angle varying in the intervals (0[degrees] to 120[degrees]) and (0[degrees] to 360[degrees]) for cases I and II, respectively. Flow and thermal fields are given in terms of streamlines and isotherms distributions. It is observed that inclination angle can be used as a relevant parameter to control heat transfer in right-angled triangular enclosures.</description><subject>Adiabatic flow</subject><subject>Boundary conditions</subject><subject>Boussinesq approximation</subject><subject>Computational fluid dynamics</subject><subject>Free convection</subject><subject>Heat transfer</subject><subject>Holes</subject><subject>Inclination angle</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Walls</subject><issn>1555-256X</issn><issn>1555-2578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkb1OwzAURiMEEqXwAGyWWFga7Di2Y7YS_iqVMlAktsp1bOoqsYNjVyrvwruSAmJgYrpXV0fn09WXJKcIppgzeKGrpk0ziHAKIU8xwXvJABFCRhlhxf7vTl8Ok6OuW0OIGSf5IPmYxUZ5I0UNnkKstsBpMBMh-v5QOrtRMhhngbFAWDCxsjZWVWDujbCvsRYelGJjwhZo58G10Vp5ZQOYr5RvesOVi7YSfrtTVWZn6i7BuG3rPvDL26eFlQJTEYKRqufr8N4Ia8GDCitXHScHWtSdOvmZw-T59mZe3o-mj3eTcjwdtVnOwyhjRDJO8TKDDDMKEUE5gZroAi-1xirTBaMIS4wqqCWCFcNcEyqVKhgpNMXD5Pzb23r3FlUXFo3ppKprYZWL3QIxSjhlBWH_QTMEc5rjHj37g65d9LZ_ZJH1pSGGOIf4EybfiUE</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Mahmoudi, Ahmed</creator><creator>Mejri, Imen</creator><creator>Abbassi, Mohamed Ammar</creator><creator>Omri, Ahmed</creator><general>Tech Science Press</general><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20130101</creationdate><title>Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method</title><author>Mahmoudi, Ahmed ; Mejri, Imen ; Abbassi, Mohamed Ammar ; Omri, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p249t-275c7963b2073760151450f5f83bff3e2f87613c31d0fc10d739f56cee8758f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adiabatic flow</topic><topic>Boundary conditions</topic><topic>Boussinesq approximation</topic><topic>Computational fluid dynamics</topic><topic>Free convection</topic><topic>Heat transfer</topic><topic>Holes</topic><topic>Inclination angle</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Walls</topic><toplevel>online_resources</toplevel><creatorcontrib>Mahmoudi, Ahmed</creatorcontrib><creatorcontrib>Mejri, Imen</creatorcontrib><creatorcontrib>Abbassi, Mohamed Ammar</creatorcontrib><creatorcontrib>Omri, Ahmed</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Fluid dynamics & materials processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahmoudi, Ahmed</au><au>Mejri, Imen</au><au>Abbassi, Mohamed Ammar</au><au>Omri, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method</atitle><jtitle>Fluid dynamics & materials processing</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>9</volume><issue>4</issue><spage>353</spage><epage>388</epage><pages>353-388</pages><issn>1555-256X</issn><eissn>1555-2578</eissn><abstract>A double-population Lattice Boltzmann Method (LBM) is applied to solve the steady-state laminar natural convective heat-transfer problem in a triangular cavity filled with air (Pr = 0.71). Two different boundary conditions are implemented for the vertical and inclined boundaries: Case I) adiabatic vertical wall and inclined isothermal wall, Case II) isothermal vertical wall and adiabatic inclined wall. The bottom wall is assumed to be at a constant temperature (isothermal) for both cases. The buoyancy effect is modeled in the framework of the well-known Boussinesq approximation. The velocity and temperature fields are determined by a D2Q9 LBM and a D2Q4 LBM, respectively. Comparison with previously published work shows excellent agreement. Numerical results are obtained for a wide range of parameters: the Rayleigh number spanning the range(10 super(3) -10 super(6)) and the inclination angle varying in the intervals (0[degrees] to 120[degrees]) and (0[degrees] to 360[degrees]) for cases I and II, respectively. Flow and thermal fields are given in terms of streamlines and isotherms distributions. It is observed that inclination angle can be used as a relevant parameter to control heat transfer in right-angled triangular enclosures.</abstract><cop>Duluth</cop><pub>Tech Science Press</pub><doi>10.3970/fdmp.2013.009.353</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1555-256X |
ispartof | Fluid dynamics & materials processing, 2013-01, Vol.9 (4), p.353-388 |
issn | 1555-256X 1555-2578 |
language | eng |
recordid | cdi_proquest_miscellaneous_1765967857 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adiabatic flow Boundary conditions Boussinesq approximation Computational fluid dynamics Free convection Heat transfer Holes Inclination angle Mathematical models Parameters Walls |
title | Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Study%20of%20Natural%20Convection%20in%20an%20Inclined%20Triangular%20Cavity%20for%20Different%20Thermal%20Boundary%20Conditions:%20Application%20of%20the%20Lattice%20Boltzmann%20Method&rft.jtitle=Fluid%20dynamics%20&%20materials%20processing&rft.au=Mahmoudi,%20Ahmed&rft.date=2013-01-01&rft.volume=9&rft.issue=4&rft.spage=353&rft.epage=388&rft.pages=353-388&rft.issn=1555-256X&rft.eissn=1555-2578&rft_id=info:doi/10.3970/fdmp.2013.009.353&rft_dat=%3Cproquest%3E1765967857%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397171990&rft_id=info:pmid/&rfr_iscdi=true |