Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method

A double-population Lattice Boltzmann Method (LBM) is applied to solve the steady-state laminar natural convective heat-transfer problem in a triangular cavity filled with air (Pr = 0.71). Two different boundary conditions are implemented for the vertical and inclined boundaries: Case I) adiabatic v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid dynamics & materials processing 2013-01, Vol.9 (4), p.353-388
Hauptverfasser: Mahmoudi, Ahmed, Mejri, Imen, Abbassi, Mohamed Ammar, Omri, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 4
container_start_page 353
container_title Fluid dynamics & materials processing
container_volume 9
creator Mahmoudi, Ahmed
Mejri, Imen
Abbassi, Mohamed Ammar
Omri, Ahmed
description A double-population Lattice Boltzmann Method (LBM) is applied to solve the steady-state laminar natural convective heat-transfer problem in a triangular cavity filled with air (Pr = 0.71). Two different boundary conditions are implemented for the vertical and inclined boundaries: Case I) adiabatic vertical wall and inclined isothermal wall, Case II) isothermal vertical wall and adiabatic inclined wall. The bottom wall is assumed to be at a constant temperature (isothermal) for both cases. The buoyancy effect is modeled in the framework of the well-known Boussinesq approximation. The velocity and temperature fields are determined by a D2Q9 LBM and a D2Q4 LBM, respectively. Comparison with previously published work shows excellent agreement. Numerical results are obtained for a wide range of parameters: the Rayleigh number spanning the range(10 super(3) -10 super(6)) and the inclination angle varying in the intervals (0[degrees] to 120[degrees]) and (0[degrees] to 360[degrees]) for cases I and II, respectively. Flow and thermal fields are given in terms of streamlines and isotherms distributions. It is observed that inclination angle can be used as a relevant parameter to control heat transfer in right-angled triangular enclosures.
doi_str_mv 10.3970/fdmp.2013.009.353
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1765967857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1765967857</sourcerecordid><originalsourceid>FETCH-LOGICAL-p249t-275c7963b2073760151450f5f83bff3e2f87613c31d0fc10d739f56cee8758f63</originalsourceid><addsrcrecordid>eNqNkb1OwzAURiMEEqXwAGyWWFga7Di2Y7YS_iqVMlAktsp1bOoqsYNjVyrvwruSAmJgYrpXV0fn09WXJKcIppgzeKGrpk0ziHAKIU8xwXvJABFCRhlhxf7vTl8Ok6OuW0OIGSf5IPmYxUZ5I0UNnkKstsBpMBMh-v5QOrtRMhhngbFAWDCxsjZWVWDujbCvsRYelGJjwhZo58G10Vp5ZQOYr5RvesOVi7YSfrtTVWZn6i7BuG3rPvDL26eFlQJTEYKRqufr8N4Ia8GDCitXHScHWtSdOvmZw-T59mZe3o-mj3eTcjwdtVnOwyhjRDJO8TKDDDMKEUE5gZroAi-1xirTBaMIS4wqqCWCFcNcEyqVKhgpNMXD5Pzb23r3FlUXFo3ppKprYZWL3QIxSjhlBWH_QTMEc5rjHj37g65d9LZ_ZJH1pSGGOIf4EybfiUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397171990</pqid></control><display><type>article</type><title>Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mahmoudi, Ahmed ; Mejri, Imen ; Abbassi, Mohamed Ammar ; Omri, Ahmed</creator><creatorcontrib>Mahmoudi, Ahmed ; Mejri, Imen ; Abbassi, Mohamed Ammar ; Omri, Ahmed</creatorcontrib><description>A double-population Lattice Boltzmann Method (LBM) is applied to solve the steady-state laminar natural convective heat-transfer problem in a triangular cavity filled with air (Pr = 0.71). Two different boundary conditions are implemented for the vertical and inclined boundaries: Case I) adiabatic vertical wall and inclined isothermal wall, Case II) isothermal vertical wall and adiabatic inclined wall. The bottom wall is assumed to be at a constant temperature (isothermal) for both cases. The buoyancy effect is modeled in the framework of the well-known Boussinesq approximation. The velocity and temperature fields are determined by a D2Q9 LBM and a D2Q4 LBM, respectively. Comparison with previously published work shows excellent agreement. Numerical results are obtained for a wide range of parameters: the Rayleigh number spanning the range(10 super(3) -10 super(6)) and the inclination angle varying in the intervals (0[degrees] to 120[degrees]) and (0[degrees] to 360[degrees]) for cases I and II, respectively. Flow and thermal fields are given in terms of streamlines and isotherms distributions. It is observed that inclination angle can be used as a relevant parameter to control heat transfer in right-angled triangular enclosures.</description><identifier>ISSN: 1555-256X</identifier><identifier>EISSN: 1555-2578</identifier><identifier>DOI: 10.3970/fdmp.2013.009.353</identifier><language>eng</language><publisher>Duluth: Tech Science Press</publisher><subject>Adiabatic flow ; Boundary conditions ; Boussinesq approximation ; Computational fluid dynamics ; Free convection ; Heat transfer ; Holes ; Inclination angle ; Mathematical models ; Parameters ; Walls</subject><ispartof>Fluid dynamics &amp; materials processing, 2013-01, Vol.9 (4), p.353-388</ispartof><rights>2013. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mahmoudi, Ahmed</creatorcontrib><creatorcontrib>Mejri, Imen</creatorcontrib><creatorcontrib>Abbassi, Mohamed Ammar</creatorcontrib><creatorcontrib>Omri, Ahmed</creatorcontrib><title>Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method</title><title>Fluid dynamics &amp; materials processing</title><description>A double-population Lattice Boltzmann Method (LBM) is applied to solve the steady-state laminar natural convective heat-transfer problem in a triangular cavity filled with air (Pr = 0.71). Two different boundary conditions are implemented for the vertical and inclined boundaries: Case I) adiabatic vertical wall and inclined isothermal wall, Case II) isothermal vertical wall and adiabatic inclined wall. The bottom wall is assumed to be at a constant temperature (isothermal) for both cases. The buoyancy effect is modeled in the framework of the well-known Boussinesq approximation. The velocity and temperature fields are determined by a D2Q9 LBM and a D2Q4 LBM, respectively. Comparison with previously published work shows excellent agreement. Numerical results are obtained for a wide range of parameters: the Rayleigh number spanning the range(10 super(3) -10 super(6)) and the inclination angle varying in the intervals (0[degrees] to 120[degrees]) and (0[degrees] to 360[degrees]) for cases I and II, respectively. Flow and thermal fields are given in terms of streamlines and isotherms distributions. It is observed that inclination angle can be used as a relevant parameter to control heat transfer in right-angled triangular enclosures.</description><subject>Adiabatic flow</subject><subject>Boundary conditions</subject><subject>Boussinesq approximation</subject><subject>Computational fluid dynamics</subject><subject>Free convection</subject><subject>Heat transfer</subject><subject>Holes</subject><subject>Inclination angle</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Walls</subject><issn>1555-256X</issn><issn>1555-2578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkb1OwzAURiMEEqXwAGyWWFga7Di2Y7YS_iqVMlAktsp1bOoqsYNjVyrvwruSAmJgYrpXV0fn09WXJKcIppgzeKGrpk0ziHAKIU8xwXvJABFCRhlhxf7vTl8Ok6OuW0OIGSf5IPmYxUZ5I0UNnkKstsBpMBMh-v5QOrtRMhhngbFAWDCxsjZWVWDujbCvsRYelGJjwhZo58G10Vp5ZQOYr5RvesOVi7YSfrtTVWZn6i7BuG3rPvDL26eFlQJTEYKRqufr8N4Ia8GDCitXHScHWtSdOvmZw-T59mZe3o-mj3eTcjwdtVnOwyhjRDJO8TKDDDMKEUE5gZroAi-1xirTBaMIS4wqqCWCFcNcEyqVKhgpNMXD5Pzb23r3FlUXFo3ppKprYZWL3QIxSjhlBWH_QTMEc5rjHj37g65d9LZ_ZJH1pSGGOIf4EybfiUE</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Mahmoudi, Ahmed</creator><creator>Mejri, Imen</creator><creator>Abbassi, Mohamed Ammar</creator><creator>Omri, Ahmed</creator><general>Tech Science Press</general><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20130101</creationdate><title>Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method</title><author>Mahmoudi, Ahmed ; Mejri, Imen ; Abbassi, Mohamed Ammar ; Omri, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p249t-275c7963b2073760151450f5f83bff3e2f87613c31d0fc10d739f56cee8758f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adiabatic flow</topic><topic>Boundary conditions</topic><topic>Boussinesq approximation</topic><topic>Computational fluid dynamics</topic><topic>Free convection</topic><topic>Heat transfer</topic><topic>Holes</topic><topic>Inclination angle</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Walls</topic><toplevel>online_resources</toplevel><creatorcontrib>Mahmoudi, Ahmed</creatorcontrib><creatorcontrib>Mejri, Imen</creatorcontrib><creatorcontrib>Abbassi, Mohamed Ammar</creatorcontrib><creatorcontrib>Omri, Ahmed</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Fluid dynamics &amp; materials processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahmoudi, Ahmed</au><au>Mejri, Imen</au><au>Abbassi, Mohamed Ammar</au><au>Omri, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method</atitle><jtitle>Fluid dynamics &amp; materials processing</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>9</volume><issue>4</issue><spage>353</spage><epage>388</epage><pages>353-388</pages><issn>1555-256X</issn><eissn>1555-2578</eissn><abstract>A double-population Lattice Boltzmann Method (LBM) is applied to solve the steady-state laminar natural convective heat-transfer problem in a triangular cavity filled with air (Pr = 0.71). Two different boundary conditions are implemented for the vertical and inclined boundaries: Case I) adiabatic vertical wall and inclined isothermal wall, Case II) isothermal vertical wall and adiabatic inclined wall. The bottom wall is assumed to be at a constant temperature (isothermal) for both cases. The buoyancy effect is modeled in the framework of the well-known Boussinesq approximation. The velocity and temperature fields are determined by a D2Q9 LBM and a D2Q4 LBM, respectively. Comparison with previously published work shows excellent agreement. Numerical results are obtained for a wide range of parameters: the Rayleigh number spanning the range(10 super(3) -10 super(6)) and the inclination angle varying in the intervals (0[degrees] to 120[degrees]) and (0[degrees] to 360[degrees]) for cases I and II, respectively. Flow and thermal fields are given in terms of streamlines and isotherms distributions. It is observed that inclination angle can be used as a relevant parameter to control heat transfer in right-angled triangular enclosures.</abstract><cop>Duluth</cop><pub>Tech Science Press</pub><doi>10.3970/fdmp.2013.009.353</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1555-256X
ispartof Fluid dynamics & materials processing, 2013-01, Vol.9 (4), p.353-388
issn 1555-256X
1555-2578
language eng
recordid cdi_proquest_miscellaneous_1765967857
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adiabatic flow
Boundary conditions
Boussinesq approximation
Computational fluid dynamics
Free convection
Heat transfer
Holes
Inclination angle
Mathematical models
Parameters
Walls
title Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Study%20of%20Natural%20Convection%20in%20an%20Inclined%20Triangular%20Cavity%20for%20Different%20Thermal%20Boundary%20Conditions:%20Application%20of%20the%20Lattice%20Boltzmann%20Method&rft.jtitle=Fluid%20dynamics%20&%20materials%20processing&rft.au=Mahmoudi,%20Ahmed&rft.date=2013-01-01&rft.volume=9&rft.issue=4&rft.spage=353&rft.epage=388&rft.pages=353-388&rft.issn=1555-256X&rft.eissn=1555-2578&rft_id=info:doi/10.3970/fdmp.2013.009.353&rft_dat=%3Cproquest%3E1765967857%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397171990&rft_id=info:pmid/&rfr_iscdi=true