The genesis of seismic activity on faults in Central Asia in real time and its variations

We used the Digital Faults geoinformation system that we developed to propose an algorithm for quantitative estimation of seismic activity on faults. The resulting technique was used to study the spatiotemporal patterns in the present-day activity of faults in Central Asia. Fault activity was found...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of volcanology and seismology 2011-02, Vol.5 (1), p.60-72
Hauptverfasser: Sherman, S. I., Gorbunova, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We used the Digital Faults geoinformation system that we developed to propose an algorithm for quantitative estimation of seismic activity on faults. The resulting technique was used to study the spatiotemporal patterns in the present-day activity of faults in Central Asia. Fault activity was found to vary at frequencies of a few years and cannot be explained by changes in the regional stress fields. We studied the tendency of seismic events to be localized to areas of dynamic influence due to faults. The active faults were grouped by the criteria of seismicity organization in the influence areas of these faults. It was shown that fault activity and its comparatively high frequency on real time scales are caused by strain waves, which may be generated by interplate and interblock movements in the brittle lithosphere. Judging by the speed of strain waves, the active faults are classified into groups that differ in their geological and geophysical parameters. They can be used to estimate the directions of strain wave fronts and to identify areas of dominant fault activation over intervals of real (geologically speaking) time. We give a map showing active faults in Central Asia, plots of a quantitative index of their seismic activity, and the directivity vectors of strain waves that excite fault activity. The methods we developed for classifying active faults by the quantitative index of seismic activity and for determining the vectors of strain waves that excite fault activity are all tools that significantly expand our possibilities when developing tectonophysical models of the seismic process in earthquake-generating zones of the lithosphere and open new methods for attacking problems in intermediate-term earthquake prediction.
ISSN:0742-0463
1819-7108
DOI:10.1134/S0742046311010076