Component-Level Tuning of Kinematic Features From Composite Therapist Impressions of Movement Quality
In this paper, we propose a general framework for tuning component-level kinematic features using therapists' overall impressions of movement quality, in the context of a home-based adaptive mixed reality rehabilitation (HAMRR) system. We propose a linear combination of nonlinear kinematic feat...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2016-01, Vol.20 (1), p.143-152 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 152 |
---|---|
container_issue | 1 |
container_start_page | 143 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 20 |
creator | Venkataraman, Vinay Turaga, Pavan Baran, Michael Lehrer, Nicole Tingfang Du Long Cheng Rikakis, Thanassis Wolf, Steven L. |
description | In this paper, we propose a general framework for tuning component-level kinematic features using therapists' overall impressions of movement quality, in the context of a home-based adaptive mixed reality rehabilitation (HAMRR) system. We propose a linear combination of nonlinear kinematic features to model wrist movement, and propose an approach to learn feature thresholds and weights using high-level labels of overall movement quality provided by a therapist. The kinematic features are chosen such that they correlate with the quality of wrist movements to clinical assessment scores. Further, the proposed features are designed to be reliably extracted from an inexpensive and portable motion capture system using a single reflective marker on the wrist. Using a dataset collected from ten stroke survivors, we demonstrate that the framework can be reliably used for movement quality assessment in HAMRR systems. The system is currently being deployed for large-scale evaluations, and will represent an increasingly important application area of motion capture and activity analysis. |
doi_str_mv | 10.1109/JBHI.2014.2375206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1765955686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6967759</ieee_id><sourcerecordid>1786152740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-41cf960e1d71520b2e99dc29b4e76ef3a65c9952c16023500cc79c540fb4efff3</originalsourceid><addsrcrecordid>eNqNkl9r2zAUxc3YWEvXDzAGw7CXvTjTf1kvgy00bdaMMciehaJctSq25Ul2oN--cpOGrU_Vi4Tu7xzulU5RvMdohjFSX358v1rOCMJsRqjkBIlXxSnBoq4IQfXrpzNW7KQ4T-kO5VXnKyXeFieEM1pTik8LmIe2Dx10Q7WCHTTleux8d1MGV177DlozeFsuwAxjhFQuYmjLR0XyA5TrW4im92kol22f68mHLk3Sn2EHbfYsf4-m8cP9u-KNM02C88N-VvxZXKznV9Xq1-Vy_m1VWY7pUDFsnRII8FbiPNGGgFJbS9SGgRTgqBHcKsWJxQIRyhGyVirLGXKZcM7Rs-Lr3rcfNy1sbW4hmkb30bcm3utgvP6_0vlbfRN2mkmBGRHZ4PPBIIa_I6RBtz5ZaBrTQRiTxrIWuTXJ0AtQwRXnon6JK2ecMMZIRj89Q-_CGLv8aBOVv4woyTKF95SNIaUI7jgiRnpKh57Soad06EM6subjv29zVDxlIQMf9oAHgGNZKCElV_QBweK-Jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753312974</pqid></control><display><type>article</type><title>Component-Level Tuning of Kinematic Features From Composite Therapist Impressions of Movement Quality</title><source>IEEE Electronic Library (IEL)</source><creator>Venkataraman, Vinay ; Turaga, Pavan ; Baran, Michael ; Lehrer, Nicole ; Tingfang Du ; Long Cheng ; Rikakis, Thanassis ; Wolf, Steven L.</creator><creatorcontrib>Venkataraman, Vinay ; Turaga, Pavan ; Baran, Michael ; Lehrer, Nicole ; Tingfang Du ; Long Cheng ; Rikakis, Thanassis ; Wolf, Steven L.</creatorcontrib><description>In this paper, we propose a general framework for tuning component-level kinematic features using therapists' overall impressions of movement quality, in the context of a home-based adaptive mixed reality rehabilitation (HAMRR) system. We propose a linear combination of nonlinear kinematic features to model wrist movement, and propose an approach to learn feature thresholds and weights using high-level labels of overall movement quality provided by a therapist. The kinematic features are chosen such that they correlate with the quality of wrist movements to clinical assessment scores. Further, the proposed features are designed to be reliably extracted from an inexpensive and portable motion capture system using a single reflective marker on the wrist. Using a dataset collected from ten stroke survivors, we demonstrate that the framework can be reliably used for movement quality assessment in HAMRR systems. The system is currently being deployed for large-scale evaluations, and will represent an increasingly important application area of motion capture and activity analysis.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2014.2375206</identifier><identifier>PMID: 25438331</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Assessments ; Biomechanical Phenomena - physiology ; Educational institutions ; Feature extraction ; Female ; Humans ; kinematic features ; Kinematics ; Male ; Medical treatment ; Middle Aged ; Motion perception ; Movement ; Movement - physiology ; movement quality assessment ; Quality ; Quality assessment ; Rehabilitation - instrumentation ; Rehabilitation - methods ; Stroke Rehabilitation ; Trajectory ; Treatment Outcome ; Tuning ; Visualization ; Wrist</subject><ispartof>IEEE journal of biomedical and health informatics, 2016-01, Vol.20 (1), p.143-152</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-41cf960e1d71520b2e99dc29b4e76ef3a65c9952c16023500cc79c540fb4efff3</citedby><cites>FETCH-LOGICAL-c513t-41cf960e1d71520b2e99dc29b4e76ef3a65c9952c16023500cc79c540fb4efff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6967759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6967759$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25438331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Venkataraman, Vinay</creatorcontrib><creatorcontrib>Turaga, Pavan</creatorcontrib><creatorcontrib>Baran, Michael</creatorcontrib><creatorcontrib>Lehrer, Nicole</creatorcontrib><creatorcontrib>Tingfang Du</creatorcontrib><creatorcontrib>Long Cheng</creatorcontrib><creatorcontrib>Rikakis, Thanassis</creatorcontrib><creatorcontrib>Wolf, Steven L.</creatorcontrib><title>Component-Level Tuning of Kinematic Features From Composite Therapist Impressions of Movement Quality</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>In this paper, we propose a general framework for tuning component-level kinematic features using therapists' overall impressions of movement quality, in the context of a home-based adaptive mixed reality rehabilitation (HAMRR) system. We propose a linear combination of nonlinear kinematic features to model wrist movement, and propose an approach to learn feature thresholds and weights using high-level labels of overall movement quality provided by a therapist. The kinematic features are chosen such that they correlate with the quality of wrist movements to clinical assessment scores. Further, the proposed features are designed to be reliably extracted from an inexpensive and portable motion capture system using a single reflective marker on the wrist. Using a dataset collected from ten stroke survivors, we demonstrate that the framework can be reliably used for movement quality assessment in HAMRR systems. The system is currently being deployed for large-scale evaluations, and will represent an increasingly important application area of motion capture and activity analysis.</description><subject>Adult</subject><subject>Assessments</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Educational institutions</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Humans</subject><subject>kinematic features</subject><subject>Kinematics</subject><subject>Male</subject><subject>Medical treatment</subject><subject>Middle Aged</subject><subject>Motion perception</subject><subject>Movement</subject><subject>Movement - physiology</subject><subject>movement quality assessment</subject><subject>Quality</subject><subject>Quality assessment</subject><subject>Rehabilitation - instrumentation</subject><subject>Rehabilitation - methods</subject><subject>Stroke Rehabilitation</subject><subject>Trajectory</subject><subject>Treatment Outcome</subject><subject>Tuning</subject><subject>Visualization</subject><subject>Wrist</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkl9r2zAUxc3YWEvXDzAGw7CXvTjTf1kvgy00bdaMMciehaJctSq25Ul2oN--cpOGrU_Vi4Tu7xzulU5RvMdohjFSX358v1rOCMJsRqjkBIlXxSnBoq4IQfXrpzNW7KQ4T-kO5VXnKyXeFieEM1pTik8LmIe2Dx10Q7WCHTTleux8d1MGV177DlozeFsuwAxjhFQuYmjLR0XyA5TrW4im92kol22f68mHLk3Sn2EHbfYsf4-m8cP9u-KNM02C88N-VvxZXKznV9Xq1-Vy_m1VWY7pUDFsnRII8FbiPNGGgFJbS9SGgRTgqBHcKsWJxQIRyhGyVirLGXKZcM7Rs-Lr3rcfNy1sbW4hmkb30bcm3utgvP6_0vlbfRN2mkmBGRHZ4PPBIIa_I6RBtz5ZaBrTQRiTxrIWuTXJ0AtQwRXnon6JK2ecMMZIRj89Q-_CGLv8aBOVv4woyTKF95SNIaUI7jgiRnpKh57Soad06EM6subjv29zVDxlIQMf9oAHgGNZKCElV_QBweK-Jg</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Venkataraman, Vinay</creator><creator>Turaga, Pavan</creator><creator>Baran, Michael</creator><creator>Lehrer, Nicole</creator><creator>Tingfang Du</creator><creator>Long Cheng</creator><creator>Rikakis, Thanassis</creator><creator>Wolf, Steven L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>Component-Level Tuning of Kinematic Features From Composite Therapist Impressions of Movement Quality</title><author>Venkataraman, Vinay ; Turaga, Pavan ; Baran, Michael ; Lehrer, Nicole ; Tingfang Du ; Long Cheng ; Rikakis, Thanassis ; Wolf, Steven L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-41cf960e1d71520b2e99dc29b4e76ef3a65c9952c16023500cc79c540fb4efff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Assessments</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Educational institutions</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Humans</topic><topic>kinematic features</topic><topic>Kinematics</topic><topic>Male</topic><topic>Medical treatment</topic><topic>Middle Aged</topic><topic>Motion perception</topic><topic>Movement</topic><topic>Movement - physiology</topic><topic>movement quality assessment</topic><topic>Quality</topic><topic>Quality assessment</topic><topic>Rehabilitation - instrumentation</topic><topic>Rehabilitation - methods</topic><topic>Stroke Rehabilitation</topic><topic>Trajectory</topic><topic>Treatment Outcome</topic><topic>Tuning</topic><topic>Visualization</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkataraman, Vinay</creatorcontrib><creatorcontrib>Turaga, Pavan</creatorcontrib><creatorcontrib>Baran, Michael</creatorcontrib><creatorcontrib>Lehrer, Nicole</creatorcontrib><creatorcontrib>Tingfang Du</creatorcontrib><creatorcontrib>Long Cheng</creatorcontrib><creatorcontrib>Rikakis, Thanassis</creatorcontrib><creatorcontrib>Wolf, Steven L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Venkataraman, Vinay</au><au>Turaga, Pavan</au><au>Baran, Michael</au><au>Lehrer, Nicole</au><au>Tingfang Du</au><au>Long Cheng</au><au>Rikakis, Thanassis</au><au>Wolf, Steven L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Component-Level Tuning of Kinematic Features From Composite Therapist Impressions of Movement Quality</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>20</volume><issue>1</issue><spage>143</spage><epage>152</epage><pages>143-152</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>In this paper, we propose a general framework for tuning component-level kinematic features using therapists' overall impressions of movement quality, in the context of a home-based adaptive mixed reality rehabilitation (HAMRR) system. We propose a linear combination of nonlinear kinematic features to model wrist movement, and propose an approach to learn feature thresholds and weights using high-level labels of overall movement quality provided by a therapist. The kinematic features are chosen such that they correlate with the quality of wrist movements to clinical assessment scores. Further, the proposed features are designed to be reliably extracted from an inexpensive and portable motion capture system using a single reflective marker on the wrist. Using a dataset collected from ten stroke survivors, we demonstrate that the framework can be reliably used for movement quality assessment in HAMRR systems. The system is currently being deployed for large-scale evaluations, and will represent an increasingly important application area of motion capture and activity analysis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25438331</pmid><doi>10.1109/JBHI.2014.2375206</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2016-01, Vol.20 (1), p.143-152 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_proquest_miscellaneous_1765955686 |
source | IEEE Electronic Library (IEL) |
subjects | Adult Assessments Biomechanical Phenomena - physiology Educational institutions Feature extraction Female Humans kinematic features Kinematics Male Medical treatment Middle Aged Motion perception Movement Movement - physiology movement quality assessment Quality Quality assessment Rehabilitation - instrumentation Rehabilitation - methods Stroke Rehabilitation Trajectory Treatment Outcome Tuning Visualization Wrist |
title | Component-Level Tuning of Kinematic Features From Composite Therapist Impressions of Movement Quality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Component-Level%20Tuning%20of%20Kinematic%20Features%20From%20Composite%20Therapist%20Impressions%20of%20Movement%20Quality&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Venkataraman,%20Vinay&rft.date=2016-01-01&rft.volume=20&rft.issue=1&rft.spage=143&rft.epage=152&rft.pages=143-152&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2014.2375206&rft_dat=%3Cproquest_RIE%3E1786152740%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753312974&rft_id=info:pmid/25438331&rft_ieee_id=6967759&rfr_iscdi=true |