Component-Level Tuning of Kinematic Features From Composite Therapist Impressions of Movement Quality

In this paper, we propose a general framework for tuning component-level kinematic features using therapists' overall impressions of movement quality, in the context of a home-based adaptive mixed reality rehabilitation (HAMRR) system. We propose a linear combination of nonlinear kinematic feat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2016-01, Vol.20 (1), p.143-152
Hauptverfasser: Venkataraman, Vinay, Turaga, Pavan, Baran, Michael, Lehrer, Nicole, Tingfang Du, Long Cheng, Rikakis, Thanassis, Wolf, Steven L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue 1
container_start_page 143
container_title IEEE journal of biomedical and health informatics
container_volume 20
creator Venkataraman, Vinay
Turaga, Pavan
Baran, Michael
Lehrer, Nicole
Tingfang Du
Long Cheng
Rikakis, Thanassis
Wolf, Steven L.
description In this paper, we propose a general framework for tuning component-level kinematic features using therapists' overall impressions of movement quality, in the context of a home-based adaptive mixed reality rehabilitation (HAMRR) system. We propose a linear combination of nonlinear kinematic features to model wrist movement, and propose an approach to learn feature thresholds and weights using high-level labels of overall movement quality provided by a therapist. The kinematic features are chosen such that they correlate with the quality of wrist movements to clinical assessment scores. Further, the proposed features are designed to be reliably extracted from an inexpensive and portable motion capture system using a single reflective marker on the wrist. Using a dataset collected from ten stroke survivors, we demonstrate that the framework can be reliably used for movement quality assessment in HAMRR systems. The system is currently being deployed for large-scale evaluations, and will represent an increasingly important application area of motion capture and activity analysis.
doi_str_mv 10.1109/JBHI.2014.2375206
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1765955686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6967759</ieee_id><sourcerecordid>1786152740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-41cf960e1d71520b2e99dc29b4e76ef3a65c9952c16023500cc79c540fb4efff3</originalsourceid><addsrcrecordid>eNqNkl9r2zAUxc3YWEvXDzAGw7CXvTjTf1kvgy00bdaMMciehaJctSq25Ul2oN--cpOGrU_Vi4Tu7xzulU5RvMdohjFSX358v1rOCMJsRqjkBIlXxSnBoq4IQfXrpzNW7KQ4T-kO5VXnKyXeFieEM1pTik8LmIe2Dx10Q7WCHTTleux8d1MGV177DlozeFsuwAxjhFQuYmjLR0XyA5TrW4im92kol22f68mHLk3Sn2EHbfYsf4-m8cP9u-KNM02C88N-VvxZXKznV9Xq1-Vy_m1VWY7pUDFsnRII8FbiPNGGgFJbS9SGgRTgqBHcKsWJxQIRyhGyVirLGXKZcM7Rs-Lr3rcfNy1sbW4hmkb30bcm3utgvP6_0vlbfRN2mkmBGRHZ4PPBIIa_I6RBtz5ZaBrTQRiTxrIWuTXJ0AtQwRXnon6JK2ecMMZIRj89Q-_CGLv8aBOVv4woyTKF95SNIaUI7jgiRnpKh57Soad06EM6subjv29zVDxlIQMf9oAHgGNZKCElV_QBweK-Jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753312974</pqid></control><display><type>article</type><title>Component-Level Tuning of Kinematic Features From Composite Therapist Impressions of Movement Quality</title><source>IEEE Electronic Library (IEL)</source><creator>Venkataraman, Vinay ; Turaga, Pavan ; Baran, Michael ; Lehrer, Nicole ; Tingfang Du ; Long Cheng ; Rikakis, Thanassis ; Wolf, Steven L.</creator><creatorcontrib>Venkataraman, Vinay ; Turaga, Pavan ; Baran, Michael ; Lehrer, Nicole ; Tingfang Du ; Long Cheng ; Rikakis, Thanassis ; Wolf, Steven L.</creatorcontrib><description>In this paper, we propose a general framework for tuning component-level kinematic features using therapists' overall impressions of movement quality, in the context of a home-based adaptive mixed reality rehabilitation (HAMRR) system. We propose a linear combination of nonlinear kinematic features to model wrist movement, and propose an approach to learn feature thresholds and weights using high-level labels of overall movement quality provided by a therapist. The kinematic features are chosen such that they correlate with the quality of wrist movements to clinical assessment scores. Further, the proposed features are designed to be reliably extracted from an inexpensive and portable motion capture system using a single reflective marker on the wrist. Using a dataset collected from ten stroke survivors, we demonstrate that the framework can be reliably used for movement quality assessment in HAMRR systems. The system is currently being deployed for large-scale evaluations, and will represent an increasingly important application area of motion capture and activity analysis.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2014.2375206</identifier><identifier>PMID: 25438331</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Assessments ; Biomechanical Phenomena - physiology ; Educational institutions ; Feature extraction ; Female ; Humans ; kinematic features ; Kinematics ; Male ; Medical treatment ; Middle Aged ; Motion perception ; Movement ; Movement - physiology ; movement quality assessment ; Quality ; Quality assessment ; Rehabilitation - instrumentation ; Rehabilitation - methods ; Stroke Rehabilitation ; Trajectory ; Treatment Outcome ; Tuning ; Visualization ; Wrist</subject><ispartof>IEEE journal of biomedical and health informatics, 2016-01, Vol.20 (1), p.143-152</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-41cf960e1d71520b2e99dc29b4e76ef3a65c9952c16023500cc79c540fb4efff3</citedby><cites>FETCH-LOGICAL-c513t-41cf960e1d71520b2e99dc29b4e76ef3a65c9952c16023500cc79c540fb4efff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6967759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6967759$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25438331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Venkataraman, Vinay</creatorcontrib><creatorcontrib>Turaga, Pavan</creatorcontrib><creatorcontrib>Baran, Michael</creatorcontrib><creatorcontrib>Lehrer, Nicole</creatorcontrib><creatorcontrib>Tingfang Du</creatorcontrib><creatorcontrib>Long Cheng</creatorcontrib><creatorcontrib>Rikakis, Thanassis</creatorcontrib><creatorcontrib>Wolf, Steven L.</creatorcontrib><title>Component-Level Tuning of Kinematic Features From Composite Therapist Impressions of Movement Quality</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>In this paper, we propose a general framework for tuning component-level kinematic features using therapists' overall impressions of movement quality, in the context of a home-based adaptive mixed reality rehabilitation (HAMRR) system. We propose a linear combination of nonlinear kinematic features to model wrist movement, and propose an approach to learn feature thresholds and weights using high-level labels of overall movement quality provided by a therapist. The kinematic features are chosen such that they correlate with the quality of wrist movements to clinical assessment scores. Further, the proposed features are designed to be reliably extracted from an inexpensive and portable motion capture system using a single reflective marker on the wrist. Using a dataset collected from ten stroke survivors, we demonstrate that the framework can be reliably used for movement quality assessment in HAMRR systems. The system is currently being deployed for large-scale evaluations, and will represent an increasingly important application area of motion capture and activity analysis.</description><subject>Adult</subject><subject>Assessments</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Educational institutions</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Humans</subject><subject>kinematic features</subject><subject>Kinematics</subject><subject>Male</subject><subject>Medical treatment</subject><subject>Middle Aged</subject><subject>Motion perception</subject><subject>Movement</subject><subject>Movement - physiology</subject><subject>movement quality assessment</subject><subject>Quality</subject><subject>Quality assessment</subject><subject>Rehabilitation - instrumentation</subject><subject>Rehabilitation - methods</subject><subject>Stroke Rehabilitation</subject><subject>Trajectory</subject><subject>Treatment Outcome</subject><subject>Tuning</subject><subject>Visualization</subject><subject>Wrist</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkl9r2zAUxc3YWEvXDzAGw7CXvTjTf1kvgy00bdaMMciehaJctSq25Ul2oN--cpOGrU_Vi4Tu7xzulU5RvMdohjFSX358v1rOCMJsRqjkBIlXxSnBoq4IQfXrpzNW7KQ4T-kO5VXnKyXeFieEM1pTik8LmIe2Dx10Q7WCHTTleux8d1MGV177DlozeFsuwAxjhFQuYmjLR0XyA5TrW4im92kol22f68mHLk3Sn2EHbfYsf4-m8cP9u-KNM02C88N-VvxZXKznV9Xq1-Vy_m1VWY7pUDFsnRII8FbiPNGGgFJbS9SGgRTgqBHcKsWJxQIRyhGyVirLGXKZcM7Rs-Lr3rcfNy1sbW4hmkb30bcm3utgvP6_0vlbfRN2mkmBGRHZ4PPBIIa_I6RBtz5ZaBrTQRiTxrIWuTXJ0AtQwRXnon6JK2ecMMZIRj89Q-_CGLv8aBOVv4woyTKF95SNIaUI7jgiRnpKh57Soad06EM6subjv29zVDxlIQMf9oAHgGNZKCElV_QBweK-Jg</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Venkataraman, Vinay</creator><creator>Turaga, Pavan</creator><creator>Baran, Michael</creator><creator>Lehrer, Nicole</creator><creator>Tingfang Du</creator><creator>Long Cheng</creator><creator>Rikakis, Thanassis</creator><creator>Wolf, Steven L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>Component-Level Tuning of Kinematic Features From Composite Therapist Impressions of Movement Quality</title><author>Venkataraman, Vinay ; Turaga, Pavan ; Baran, Michael ; Lehrer, Nicole ; Tingfang Du ; Long Cheng ; Rikakis, Thanassis ; Wolf, Steven L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-41cf960e1d71520b2e99dc29b4e76ef3a65c9952c16023500cc79c540fb4efff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Assessments</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Educational institutions</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Humans</topic><topic>kinematic features</topic><topic>Kinematics</topic><topic>Male</topic><topic>Medical treatment</topic><topic>Middle Aged</topic><topic>Motion perception</topic><topic>Movement</topic><topic>Movement - physiology</topic><topic>movement quality assessment</topic><topic>Quality</topic><topic>Quality assessment</topic><topic>Rehabilitation - instrumentation</topic><topic>Rehabilitation - methods</topic><topic>Stroke Rehabilitation</topic><topic>Trajectory</topic><topic>Treatment Outcome</topic><topic>Tuning</topic><topic>Visualization</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkataraman, Vinay</creatorcontrib><creatorcontrib>Turaga, Pavan</creatorcontrib><creatorcontrib>Baran, Michael</creatorcontrib><creatorcontrib>Lehrer, Nicole</creatorcontrib><creatorcontrib>Tingfang Du</creatorcontrib><creatorcontrib>Long Cheng</creatorcontrib><creatorcontrib>Rikakis, Thanassis</creatorcontrib><creatorcontrib>Wolf, Steven L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Venkataraman, Vinay</au><au>Turaga, Pavan</au><au>Baran, Michael</au><au>Lehrer, Nicole</au><au>Tingfang Du</au><au>Long Cheng</au><au>Rikakis, Thanassis</au><au>Wolf, Steven L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Component-Level Tuning of Kinematic Features From Composite Therapist Impressions of Movement Quality</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>20</volume><issue>1</issue><spage>143</spage><epage>152</epage><pages>143-152</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>In this paper, we propose a general framework for tuning component-level kinematic features using therapists' overall impressions of movement quality, in the context of a home-based adaptive mixed reality rehabilitation (HAMRR) system. We propose a linear combination of nonlinear kinematic features to model wrist movement, and propose an approach to learn feature thresholds and weights using high-level labels of overall movement quality provided by a therapist. The kinematic features are chosen such that they correlate with the quality of wrist movements to clinical assessment scores. Further, the proposed features are designed to be reliably extracted from an inexpensive and portable motion capture system using a single reflective marker on the wrist. Using a dataset collected from ten stroke survivors, we demonstrate that the framework can be reliably used for movement quality assessment in HAMRR systems. The system is currently being deployed for large-scale evaluations, and will represent an increasingly important application area of motion capture and activity analysis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25438331</pmid><doi>10.1109/JBHI.2014.2375206</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2016-01, Vol.20 (1), p.143-152
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_miscellaneous_1765955686
source IEEE Electronic Library (IEL)
subjects Adult
Assessments
Biomechanical Phenomena - physiology
Educational institutions
Feature extraction
Female
Humans
kinematic features
Kinematics
Male
Medical treatment
Middle Aged
Motion perception
Movement
Movement - physiology
movement quality assessment
Quality
Quality assessment
Rehabilitation - instrumentation
Rehabilitation - methods
Stroke Rehabilitation
Trajectory
Treatment Outcome
Tuning
Visualization
Wrist
title Component-Level Tuning of Kinematic Features From Composite Therapist Impressions of Movement Quality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Component-Level%20Tuning%20of%20Kinematic%20Features%20From%20Composite%20Therapist%20Impressions%20of%20Movement%20Quality&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Venkataraman,%20Vinay&rft.date=2016-01-01&rft.volume=20&rft.issue=1&rft.spage=143&rft.epage=152&rft.pages=143-152&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2014.2375206&rft_dat=%3Cproquest_RIE%3E1786152740%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753312974&rft_id=info:pmid/25438331&rft_ieee_id=6967759&rfr_iscdi=true